Sharp Upper Estimates for the First Eigenvalue of a Jacobi Type Operator
Palabras clave:
Euclidean space, Euclidean sphere, closed hypersurfaces, r-th mean curvatures, Jacobi operator, Reilly type inequalitiesResumen
Our purpose in this article is to obtain sharp upper estimates for the first positive eigenvalue of a Jacobi type operator, which is a suitable extension of the linearized operators of the higher order mean curvatures of a closed hypersurface immersed either in the Euclidean space or in the Euclidean sphere.
Descargas
Referencias
H. Alencar, M. de Carmo, F. Marques, Upper bounds for the first eigenvalue of the operator Lr and some applications, Illinois J. Math. 45 (2001), 851 – 863.
H. Alencar, M. de Carmo, H. Rosemberg, On the first eigenvalue of the linearized operator of the r-th mean curvature of a hypersurface, Ann. Global Anal. Geom. 11 (1993), 387 – 395.
L.J. Alı́as, J.M. Malacarne, On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms, Illinois J. Math. 48 (2004), 219 – 240.
J.L.M. Barbosa, A.G. Colares, Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), 277 – 297.
A. Caminha, A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds, Differential Geom. Appl. 24 (2006), 652 – 659.
A. El Soufi, S. Ilias, Une inégalité du type “Reilly” pour les sous-variétés de l’espace hyperbolique, Comment. Math. Helv. 67 (1992), 167 – 181.
F. Giménez, V. Miquel, J.J. Orengo, Upper bounds of the first eigenvalue of closed hypersurfaces by the quotient area/volume, Arch. Math. (Basel) 83 (2004), 279 – 288.
J.-F. Grosjean, A Reilly inequality for some natural elliptic operators on hypersurfaces, Differential Geom. Appl. 13 (2000), 267 – 276.
J.-F. Grosjean, Estimations extrinsèques de la première valeur propre d’opérateurs elliptiques définis sur des sous-variétés et applications, C.R. Acad. Sci. Paris Sér. I Math. 330 (2000), 807 – 810.
J.-F. Grosjean, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific J. Math. 206 (2002), 93 – 112.
E. Heintze, Extrinsic upper bound for λ1 , Math. Ann. 280 (1988), 389 – 402.
R.C. Reilly, Variational properties of functions of the mean curvature for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465 – 477.
R.C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), 525 – 533.
H. Rosemberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), 211 – 239.
T. Takahashi, Minimal inmersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380 – 385.
A.R. Veeravalli, On the first Laplacian eigenvalue and the center of gravity of compact hypersurfaces, Comment. Math. Helv. 76 (2001), 155 – 160.
M.A. Velásquez, A.F. de Sousa, H.F. de Lima, On the stability of hypersurfaces in space forms, J. Math. Anal. Appl. 406 (2013), 134–146.