Characterizations of minimal hypersurfaces immersed in certain warped products
doi:10.17398/2605-5686.34.1.123
Keywords:
Killing warped product, constant mean curvature hypersurfaces, minimal hypersurfaces, totally geodesic hypersurfacesAbstract
Our purpose in this paper is to investigate when a complete two-sided hypersurface immersed with constant mean curvature in a Killing warped product Mn ×ρ R, whose Riemannian base Mn has sectional curvature bounded from below and such that the warping function ρ ∈ C∞ (M ) is supposed to be concave, is minimal (and, in particular, totally geodesic) in the ambient space. Our approach is based on the application of the well known generalized maximum principle of Omori-Yau.
Downloads
References
L.J. Alías, M. Dajczer , J.B. Ripoll, A Bernstein-type theorem for Riemannian manifolds with a Killing field, Ann. Glob. Anal. Geom. 31 (2007), 363 – 373.
L.J. Alías, P. Mastrolia, M. Rigoli, “ Maximum Principles and Geometric Applications ”, Springer Monographs in Mathematics, New York, 2016.
J.L.M. Barbosa, M. do Carmo, J. Eschenburg, Stability of Hyper- surfaces with Constant Mean Curvature, Math. Z. 197 (1988), 123 – 138.
S. Bernstein, Sur les surfaces définies au moyen de leur courboure moyenne ou totale, Ann. Ec. Norm. Sup. 27 (1910), 233 – 256.
E. Bombieri, E. de Giorgi, M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Ration. Mech. Anal. 32 (1969), 255 – 267.
A. Caminha, H.F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. Belgian Math. Soc. Simon Stevin 16 (2009), 91 – 105.
M. Dajczer, J.H. de Lira, Entire bounded constant mean curvature Killing graphs, J. Math. Pures Appl. 103 (2015), 219 – 227.
H.F. de Lima, E.A. Lima Jr., U.L. Parente, Hypersurfaces with prescribed angle function, Pacific J. Math. 269 (2014), 393 – 406.
H.F. de Lima, U.L. Parente, A Bernstein type theorem in R × Hn , Bull. Brazilian Math. Soc. 43 (2012), 17 – 26.
M. Dajczer, P. Hinojosa, J.H. de Lira, Killing graphs with prescribed mean curvature, Calc. Var. PDE 33 (2008), 231 – 248.
H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205 – 214.
B. O’Neill, “ Semi-Riemannian Geometry with Applications to Relativity ”, Academic Press, London, 1983.
S. Pigola, M. Rigoli, A.G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. American Math. Soc. 174, Number 822, 2005.
H. Rosenberg, F. Schulze, J. Spruck, The half-space property and entire positive minimal graphs in M × R, J. Diff. Geom. 95 (2013), 321 – 336.
S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201 – 228.