Estimates of Generalized Nevanlinna Counting Function and Applications to Composition Operators

Autores/as

  • Z. Bendaoud Laboratoire de Mathematiques Pures et Appliques, Universite de Amar telidji Laghouat
  • F. Korrichi Université de M. Khider, Biskra,
  • L. Merghni Aix Marseille Université, CNRS, Centrale Marseille
  • A. Yagoub Laboratoire de Mathématiques Pures et Appliqués, Université de Amar telidji Laghouat

DOI:

https://doi.org/10.17398/

Palabras clave:

Dirichlet spaces, Composition operators, Hilbert-Schmidt operators, Generalized Nevanlinna counting function

Resumen

Let φ be a holomorphic self-map of the unit disc. We study the relationship between the generalized Nevanlinna counting function associated with φ and the norms of φn in the Dirichlet spaces. We give examples of Hilbert-Schmidt composition operators on the Dirichlet spaces.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

H. Benazzouz, O. El-Fallah, K. Kellay, H. Mahzouli, Contact points and Schatten composition operators, Math. Z. 279 (1-2) (2015), 407 – 422.

O. El-Fallah, M. El Ibbaoui, H. Naqos, Composition operators with univalent symbol in Schatten classes, J. Funct. Anal. 266 (3) (2014), 1547 – -1564.

O. El-Fallah, K. Kellay, T. Ransford, On the Brown–Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222 (6) (2009), 2196 – 2214.

O. El-Fallah, K. Kellay, T. Ransford, Cantor sets and cyclicity in weighted Dirichlet spaces, J. Math. Anal. Appl. 372 (2) (2010), 565 – 573.

O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi, Level sets and Composition operators on the Dirichlet space, J. Funct. Anal. 260 (6) (2011), 1721 – 1733.

O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, “A Primer on the Dirichlet Space ” Cambridge Tracts in Mathematics 203, Cambridge University Press, Cambridge, 2014.

E.A. Gallardo-Gutiérrez, M.J. González, Exceptional sets and Hilbert–Schmidt composition operators, J. Funct. Anal. 199 (2) (2003),

– 300.

J.B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics 96, Academic Press, New York-London, 1981.

K. Kellay, P. Lefevre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl. 386 (2) (2012), 718 – 727.

P. Lefevre, D. Li, H. Queffelec, L. Rodríguez-Piazza, Approximation numbers of composition operators on the Dirichlet space, Ark. Mat. 53 (1) (2015), 155 – 175.

D. Li, H. Queff elec, L. Rodr guez-Piazza, Two results on composition

operators on the Dirichlet space, J. Math. Anal. Appl. 426 (2) (2015),

– 746.

J.H. Shapiro, The essential norm of a composition operator, Ann. of Math.

(2) 125 (2) (1987), 375 – 404.

J.H. Shapiro, Composition Operators and Classical Function Theory, Springer Verlag, New York, 1993.

N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (7) (1998), 2013 – 2023.

Descargas

Publicado

2023-12-21

Número

Sección

Operator Theory

Cómo citar

Estimates of Generalized Nevanlinna Counting Function and Applications to Composition Operators. (2023). Extracta Mathematicae, 30(2), 221-234. https://doi.org/10.17398/