Estimates of Generalized Nevanlinna Counting Function and Applications to Composition Operators
DOI:
https://doi.org/10.17398/Keywords:
Generalized Nevanlinna counting function, Dirichlet spaces, composition operators, Hilbert-Schmidt operatorsAbstract
Let φ be a holomorphic self-map of the unit disc. We study the relationship between the generalized Nevanlinna counting function associated with φ and the norms of φn in the Dirichlet spaces. We give examples of Hilbert-Schmidt composition operators on the Dirichlet spaces.
Downloads
References
H. Benazzouz, O. El-Fallah, K. Kellay, H. Mahzouli, Contact points and Schatten composition operators, Math. Z. 279 (1-2) (2015), 407 – 422.
O. El-Fallah, M. El Ibbaoui, H. Naqos, Composition operators with univalent symbol in Schatten classes, J. Funct. Anal. 266 (3) (2014), 1547 – -1564.
O. El-Fallah, K. Kellay, T. Ransford, On the Brown–Shields conjecture for cyclicity in the Dirichlet space, Adv. Math. 222 (6) (2009), 2196 – 2214.
O. El-Fallah, K. Kellay, T. Ransford, Cantor sets and cyclicity in weighted Dirichlet spaces, J. Math. Anal. Appl. 372 (2) (2010), 565 – 573.
O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssfi, Level sets and Composition operators on the Dirichlet space, J. Funct. Anal. 260 (6) (2011), 1721 – 1733.
O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, “A Primer on the Dirichlet Space ” Cambridge Tracts in Mathematics 203, Cambridge University Press, Cambridge, 2014.
E.A. Gallardo-Gutiérrez, M.J. González, Exceptional sets and Hilbert–Schmidt composition operators, J. Funct. Anal. 199 (2) (2003),
– 300.
J.B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics 96, Academic Press, New York-London, 1981.
K. Kellay, P. Lefevre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl. 386 (2) (2012), 718 – 727.
P. Lefevre, D. Li, H. Queffelec, L. Rodríguez-Piazza, Approximation numbers of composition operators on the Dirichlet space, Ark. Mat. 53 (1) (2015), 155 – 175.
D. Li, H. Queff elec, L. Rodr guez-Piazza, Two results on composition
operators on the Dirichlet space, J. Math. Anal. Appl. 426 (2) (2015),
– 746.
J.H. Shapiro, The essential norm of a composition operator, Ann. of Math.
(2) 125 (2) (1987), 375 – 404.
J.H. Shapiro, Composition Operators and Classical Function Theory, Springer Verlag, New York, 1993.
N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (7) (1998), 2013 – 2023.