Topological Hausdorff dimension and Poincaré inequality
DOI:
https://doi.org/10.17398/2605-5686.37.2.211Palabras clave:
Poincaré inequality, metric space, Cantor sets, topological dimension, Hausdorff dimension, bi-Lipschitz map, Ahlfors regularResumen
A relationship between Poincaré inequalities and the topological Hausdorff dimension is exposed—a lower bound on the dimension of Ahlfors regular spaces satisfying a weak (1, p)-Poincaré inequality is given.
Descargas
Referencias
R. Balka, Z. Buczolich, M. Elekes, A new fractal dimension: the topological Hausdorff dimension, Adv. Math. 274 (2015), 881 – 927.
A. Björn, J. Björn, “ Nonlinear Potential Theory on Metric Spaces ”, EMS Tracts in Mathematics 17, European Mathematical Society (EMS), Zürich, 2011.
K. Falconer, “ Fractal Geometry ”, Second edition, Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
J. Heinonen, “ Lectures on Analysis on Metric Spaces ”, Universitext, Springer-Verlag, New York, 2001.
J. Heinonen, P. Koskela, N. Shanmugalingam, J.T. Tyson, “ Sobolev Spaces on Metric Measure Spaces. An Approach based on Upper Gradients ”, New Mathematical Monographs 27, Cambridge University Press, Cambridge, 2015.
A. Lohvansuu, K. Rajala, Duality of moduli in regular metric spaces, Indiana Univ. Math. J. 70 (3) (2021), 1087 – 1102.
H. Lotfi, The µ-topological Hausdorff dimension, Extracta Math. 34 (2) (2019), 237 – 254.
J.M. Mackay, J.T. Tyson, K. Wildrick, Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets, Geom. Funct. Anal., 23 (3) (2013), 985 – 1034.