The ξ, ζ-Dunford Pettis property
Palabras clave:
Completely continuous operators, Schur property, Dunford Pettis property, operator ideals, ordinal ranksResumen
Using the hierarchy of weakly null sequences introduced in [2], we introduce two new families of operator classes. The first family simultaneously generalizes the completely continuous operators and the weak Banach-Saks operators. The second family generalizes the class DP. We study the distinctness of these classes, and prove that each class is an operator ideal. We also investigate the properties possessed by each class, such as injectivity, surjectivity, and identification of the dual class. We produce a number of examples, including the higher ordinal Schreier and Baernstein spaces. We prove ordinal analogues of several known results for Banach spaces with the Dunford-Pettis, hereditary Dunford-Pettis property, and hereditary by quotients Dunford-Pettis property. For example, we prove that for any 0 ≤ ξ, ζ < ω1, a Banach space X has the hereditary ωξ, ωζ -Dunford-Pettis property if and only if every seminormalized, weakly null sequence either has a subsequence which is an l1ωξ-spreading model or a c0 ωζ -spreading model.
Descargas
Referencias
S.A. Argyros, I. Gasparis, Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc. 353 (5) (2001), 2019 – 2058.
S.A. Argyros, S. Mercourakis, A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157 – 193.
K. Beanland, R.M. Causey, Quantitative factorization of weakly compact, Rosenthal, and ξ-Banach-Saks operators, to appear in Math. Scand.
K. Beanland, R.M. Causey, Genericity and Universality for Operator Ideals, submitted.
K. Beanland, R.M. Causey, P. Motakis, Arbitrarily distortable Banach spaces of higher order, Israel J. Math. 214 (2016), 553 – 581.
K. Beanland, D. Freeman, Uniformly factoring weakly compact operators, J. Funct. Anal. 266 (5) (2014), 2921 – 2943.
J.M.F. Castillo, M. González, The Dunford-Pettis property is not a three-space property, Israel J. Math. 81 (1993), 297 – 299.
J.M.F. Castillo, M. González, On the Dunford-Pettis property in Banach spaces, Acta Univ. Carolin. Math. Phys. 35 (1994), 5 – 12.
J.M.F. Castillo, M. Simoes, On the three-space problem for the Dunford-Pettis property, Bull. Austral. Math. Soc. 60 (1999), 487 – 493.
R.M. Causey, Estimation of the Szlenk index of reflexive Banach spaces using generalized Baernstein spaces, Fund. Math. 228 (2015), 153 – 171.
R.M. Causey, Concerning the Szlenk index, Studia Math. 236 (2017), 201 – 244.
R.M. Causey, K. Navoyan, ξ-completely continuous operators and ξ-Schur Banach spaces, submitted.
J. Diestel, A survey of results related to the Dunford-Pettis property, in “Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces” (Univ. North Carolina, Chapel Hill, N.C., 1979), Contemp. Math., 2, Amer. Math. Soc., Providence, R.I., 1980, 15 – 60.
N. Dunford, B.J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323 – 392.
J. Elton, “Weakly Null Normalized Sequences in Banach Spaces”, Thesis (Ph.D.), Yale University, 1978.
M. González, J.M. Gutiérrez, Polynomials on Schreier’s space, Rocky Mountain J. Math. 30 (2) (2000), 571 – 585.
A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type C(K), Canad. J. Math. 5 (1953), 129 – 173.
E. Odell, N. Tomczak-Jaegermann, R. Wagner, Proximity to `1 and distortion in asymptotic `1 spaces, J. Funct. Anal. 150 (1) (1997), 101 – 145.
M. Ostrovskii, Three space problem for the weak Banach-Saks property, Mat. Zametki 38 (5) (1985), 905 – 907.
A. Pietsch, “Operator Ideals”, Mathematische Monographien [Mathematical Monographs], 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
J. Schreier, Ein Gegenbeispiel zur theorie der schwachen konvergenz, Studia Math. 2 (1930), 58 – 62.
C. Stegall, Duals of certain spaces with the Dunford-Pettis property, Notices Amer. Math. Soc. 19 (1972), A799.