Non-additive Lie centralizer of strictly upper triangular matrices
doi:10.17398/2605-5686.34.1.77
Palabras clave:
Lie centralizer, strictly upper triangular matrices, commuting mapResumen
Let F be a field of zero characteristic, let Nn (F ) denote the algebra of n × n strictly upper triangular matrices with entries in F , and let f : Nn (F ) → Nn (F ) be a non-additive Lie centralizer of Nn (F ) , that is, a map satisfying that f ([X, Y ]) = [f (X), Y ] for all X, Y ∈ Nn (F ) . We prove that f (X) = λX + η (X) where λ ∈ F and η is a map from Nn (F ) into its center Z (Nn (F ) ) satisfying that η([X, Y ]) = 0 for every X, Y in Nn (F ) .
Descargas
Referencias
J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132 – 136.
M. Brešar, Centralizing mappings on von Neumann algebra, Proc. Amer. Math. Soc. 111 (1991), 501 – 510.
M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385 – 394.
M. Brešar, Commuting traces of biadditive mappings, commutativity- preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525 – 546.
W.-S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. (2) 63 (2001), 117 – 127.
D. Eremita, Commuting traces of upper triangular matrix rings, Aequationes Math. 91 (2017), 563 – 578.
A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory 4 (2) (2019), 342 – 350.
W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl. 437 (2012), 388 – 391.
F. Ghomanjani, M.A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2) (2018), 468 – 471.
T.K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese J. Math. 1 (3) (1997), 333 – 342.
T.K. Lee, T.C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), 259 – 268.
J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (3) (1999), 447 – 456.
B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (4) (1991), 609 – 614.
R. Slowik, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), 399 – 404.
L. Chen, J.H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), 725 – 730.
D. Aiat Hadj Ahmed, R. Slowik, m-Commuting maps of the rings of infinite triangular and strictly triangular matrices (in preparation).