On self-circumferences in Minkowski planes

doi:10.17398/2605-5686.34.1.19

Autores/as

  • Mostafa Ghandehari Department of Mathematics, University of Texas at Arlington, TX 76019, U.S.A.
  • Horst Martini Faculty of Mathematics, University of Technology, 09107 Chemnitz, Germany

Palabras clave:

Gauge, Minkowski geometry, normed plane, polygonal gauges, Radon curve, self-circumference, self-perimeter

Resumen

This paper contains results on self-circumferences of convex figures in the frameworks of norms and (more general) also of gauges. Let δ(n) denote the self-circumference of a regular polygon with n sides in a normed plane. We will show that δ(n) is monotonically increasing from 6 to 2π if n is twice an odd number, and monotonically decreasing from 8 to 2π if n is twice an even number. Calculations of self-circumferences for the case that n is odd as well as inequalities for the self-circumference of some irregular polygons are also given. In addition, properties of the mixed area of a plane convex body and its polar dual are used to discuss the self-circumference of convex curves.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

H. Busemann, The foundations of Minkowskian geometry, Comment. Math. Helv. 24 (1950), 156-187.

G.D. Chakerian, Mixed areas and the self-circumference of a plane convex body, Arch. Math. (Basel) 34 (1) (1980), 81-83.

G.D. Chakerian, W.K. Talley, Some properties of the self-circumference of convex sets, Arch. Math. (Basel) 20 (1969), 431-443.

W.J. Firey, The mixed area of a convex body and its polar reciprocal, Israel J. Math. 1 (1963), 201-202.

M. Ghandehari, R. Pfiefer, Polygonal circles, Mathematics and Computer Education Journal, 29 (2) (1995), 203 – 210.

S. Golab, Quelques problémes métrique de la géométrie de Minkowski, Trav. l’Acad. Mines Cracovie 6 (1932), 1-79.

B. Grünbaum, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55-57.

P.C. Hammer, Unsolved problems, in Proc. Sympos. Pure Math. 7 (Ed. V. Klee), Amer. Math. Soc., Providence, R.I., 1963, 498-499.

H. Martini, A. Shcherba, On the self-perimeter of quadrangles for gauges, Beitr. Algebra Geom. 52 (1) (2011), 191-203.

H. Martini, A. Shcherba, On the self-perimeter of pentagonal gauges, Aequationes Math. 84 (1-2) (2012), 157-183.

H. Martini, A. Shcherba, Upper estimates on self-perimeters of unit circles for gauges, Colloq. Math. 142 (2) (2016), 179-210.

H. Martini, K.J. Swanepoel, Antinorms and Radon curves, Aequationes Math. 72 (1-2) (2006), 110-138.

H. Martini, K.J. Swanepoel, G. Weiss, The geometry of Minkowski spaces – a survey. I, Expo. Math. 19 (2) (2001), 97-142.

H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, in “Gesammelte Abhandlungen, Vol. 2”, Teubner, Leipzig-Berlin, 1911, 131-229.

G. Pólya, G. Szegö, “Problems and Theorems in Analysis”, Vol. 2, Springer-Verlag, New York-Heidelberg, 1976.

J.J. Schäffer, The self-circumferences of polar convex disks, Arch. Math. (Basel) 24 (1973), 87-90.

A.I. Shcherba, Unit disk of smallest self-perimeter in the Minkowski plane, Mat. Zametki 81 (1) (2007), 125-135 (translation in Math. Notes 81 (1-2) (2007), 108-116).

A.C. Thompson, An equiperimetric property of Minkowski circles, Bull. London Math. Soc. 7 (3) (1975), 271-272.

A.C. Thompson, “Minkowski Geometry”, Encyclopedia of Mathematics and its Applications, 63, Cambridge University Press, Cambridge, 1996.

Descargas

Publicado

2019-06-01

Número

Sección

Geometry of Banach Spaces

Cómo citar

On self-circumferences in Minkowski planes: doi:10.17398/2605-5686.34.1.19. (2019). Extracta Mathematicae, 34(1), 19-28. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.34.1.19