Minimal Matrix Representations of Decomposable Lie Algebras of Dimension Less Than or Equal to Five
doi:10.17398/2605-5686.33.2.219
Palabras clave:
Lie algebra, Lie group, minimal representationResumen
We obtain minimal dimension matrix representations for each decomposable five-dimensional Lie algebra over R and justify in each case that they are minimal.
Descargas
Referencias
D. Burde, On a refinement of Ado’s theorem, Arch. Math. 70 (2) (1998), 118 – 127.
R. Ghanam, G. Thompson, Minimal matrix representations of four- dimensional Lie algebras, Bull. Malays. Math. Soc. (2) 36 (2) (2013), 343 – 349.
R. Ghanam, G. Thompson, Minimal matrix representations of five- dimensional Lie algebras, Extracta Math. 30 (1) (2015), 95 – 133..
G.M. Mubarakzyanov, Classification of real structures of Lie algebras of fifth order (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99 – 106.
Y.-F. Kang, C.-M. Bai, Refinement of Ado’s theorem in low dimensions and applications in affine geometry, Comm. Algebra 36 (1) (2008), 82 – 93.
J. Patera, R.T. Sharp, P. Winternitz, H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys. 17 (6) (1976), 986 – 994.
G. Thompson, Z. Wick, Subalgebras of gl(3, R), Extracta Math. 27 (2) (2012), 201 – 230.