A Symmetrical Property of the Spectral Trace in Banach Algebras

Autores/as

  • Abdelaziz Maouche Department of Mathematics and Statistics, Faculty of Science Sultan Qaboos University, Oman

Palabras clave:

Banach algebra, rank, spectral additivity, trace, subharmonic function

Resumen

Our aim in this paper is to extend a symmetrical property of the trace by M. Kennedy and H. Radjavi for bounded operators on a Banach space to the more general situation of Banach algebras. The main ingredients are Vesentini’s result on subharmonicity of the spectral radius and the new spectral rank and trace defined on the socle of a Banach algebra by B. Aupetit and H. du T. Mouton.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

B. Aupetit, “ A Primer on Spectral Theory ”, Universitext, Springer-Verlag, New York, 1991.

B. Aupetit, Trace and spectrum preserving linear mappings in Jordan-Banach algebras, Monatsh. Math. 125 (1998), 179 – 187.

B. Aupetit, H. du T. Mouton, Trace and Determinant in Banach algebras, Studia Math. 121 (2) (1996), 115 – 136.

G. Braatvedt, R. Brits, F. Schultz, Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems, Studia Math. 229 (2015), 173 – 180.

M. Kennedy, H. Radjavi, Spectral conditions on Lie and Jordan algebras of compact operators, J. Funct. Anal. 256 (2009), 3143 – 3157.

Descargas

Publicado

2017-12-01

Número

Sección

Banach Spaces and Operator Theory

Cómo citar

A Symmetrical Property of the Spectral Trace in Banach Algebras. (2017). Extracta Mathematicae, 32(2), 163-172. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.32.2.163