On Small Combination of Slices in Banach Spaces
Palabras clave:
M-Ideals, Strict ideals, U-Subspaces, Small combination of slicesResumen
The notion of Small Combination of Slices (SCS) in the unit ball of a Banach space was first introduced in [4] and subsequently analyzed in detail in [12] and [13]. In this work, we introduce the notion of BSCSP, which can be seen as a generalization of dentability in terms of SCS. We study certain stability results for the w*-BSCSP leading to a discussion on BSCSP in the context of ideals of Banach spaces. We prove that the w*-BSCSP can be lifted from a M -ideal to the whole Banach Space. We also prove similar results for strict ideals and U -subspaces of a Banach space. We note that the space C(K, X)* has w*-BSCSP when K is dispersed and X* has the w*-BSCSP.
Descargas
Referencias
M. D. Acosta, A. Kamińska, M. Mastylo, The Daugavet property in rearrangement invariant spaces, Trans. Amer. Math. Soc. 367 (6) (2015), 4061 – 4078.
R. D. Bourgin, “Geometric Aspects of Convex Sets with the Radon-Nikodym Property”, Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983.
D. Chen, B. L. Lin, Ball topology on Banach spaces, Houston J. Math. 22 (2) (1996), 821 – 833.
N. Ghoussoub, G. Godefroy, B. Maurey, W. Schachermayer, “Some Topological and Geometrical Structures in Banach Spaces”, Mem. Amer. Math. Soc. 70 (378), 1987.
G. Godefroy, N. J. Kalton, P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1) (1993), 13 – 59.
P. Harmand, D. Werner, W. Werner, “M -Ideals in Banach Spaces and Banach Algebras”, Lecture Notes in Mathematics 1547, Springer-Verlag, Berlin, 1993.
Z. Hu, B. L. Lin, RNP and CPCP in Lebesgue-Bochner function spaces, Illinois J. Math. 37 (2) (1993), 329 – 347.
Ü. Kahre, L. Kirikal, E. Oja, On M -ideals of compact operators in Lorentz sequence spaces, J. Math. Anal. Appl. 259 (2) (2001), 439 – 452.
H. E. Lacey, “The Isometric Theory of Classical Banach Spaces”, Die Grundlehren der mathematischen Wissenschaften 208, Springer-Verlag, New York-Heidelberg, 1974.
B. L. Lin, P. K. Lin, S. L. Troyanski, Characterization of denting points, Proc. Amer. Math. Soc. 102 (3) (1988), 526 – 528.
T. S. S. R. K. Rao, On ideals in Banach spaces, Rocky Mountain J. Math. 31 (2) (2001), 595 – 609.
H. P. Rosenthal, On the structure of non-dentable closed bounded convex sets, Adv. in Math. 70 (1) (1988), 1 – 58.
W. Schachermayer, The Radon Nikodym property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (2) (1987), 673 – 687.