Classes of homothetic convex sets
DOI:
https://doi.org/10.17398/Palabras clave:
convex, homothetic, symmetric, section, projection, partition, tilingResumen
This is a survey of known results and still open problems on characteristic properties of classes of homothetic convex sets in the n-dimensional Euclidean space. These properties are formulated in terms of orthogonal projections, plane sections, homothety classes, Choquet simplices, and homothetic tilings and partitions.
Descargas
Referencias
A.D. Alexandrov, A theorem on convex polyhedra, Trudy Fiz.-Mat. Inst. Steklov. Sect. Math. 4 (1933), 87.
A.D. Alexandrov, An elementary proof of the existence of the center of symmetry of a three-dimensional parallelohedron, Trudy Fiz.-Mat. Inst. Steklov. Sect. Math. 4 (1933), 89 – 99.
A.D. Alexandrov, Deduction of four-dimensional non-normal parallelohedra, Izv. Akad Nauk. Ser. Mat. (1934), 803 – 817.
A.D. Alexandrov, An elementary proof of the Minkowski and some other theorems on convex polyhedra, Izv. Akad. Nauk. Ser. Mat. (1937), 597 – 606.
A.D. Alexandrov, On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications, Mat. Sb. 2 (1937), 1205 – 1238.
A.D. Alexandrov, “Convex Polyhedra”, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950.
M.A. Alfonseca, M. Cordier, D. Ryabogin, On bodies with directly congruent projections and sections, Israel J. Math. 215 (2016), 765 – 799.
M.A. Alfonseca, M. Cordier, D. Ryabogin, On bodies in R5 with directly congruent projections or sections, Rev. Mat. Iberoam. 35 (2019), 1745 – 1762.
J. Bair, R. Fourneau, “Étude géométrique des espaces vectoriels”, Lecture Notes in Math., Vol. 489, Springer-Verlag, Berlin-New York, 1975.
V. Boltyanski, H. Martini, P.S. Soltan, “Excursions into combinatorial geometry”, Universitext Springer-Verlag, Berlin, 1997.
T. Bonnesen, Om Minkowskis uligheder for konvekse legemer, Mat. Tidsskr. B (1926), 7 – 21 and 74 – 80.
T. Bonnesen, “Les problèmes des isopérimètres et des isépiphanes”, Gauthier-Villars, Paris, 1929.
T. Bonnesen, W. Fenchel, “Theorie der konvexen Körper”,Ergeb. Math. Grenzgeb., Band 3, Heft 1, Springer, Berlin, 1934.
K. Böröczky, Jr., “Finite packing and covering”, Cambridge Tracts in Math., 154, Cambridge University Press, Cambridge, 2004.
P. Brass, W. Moser, J. Pach, “Research problems in discrete geometry”, Springer, New York, 2005.
H. Brunn, “Über Ovale und Eiflächen”, Inaugural Dissertation, Straub, München, 1887.
H. Brunn, “Über Kurven ohne Wendepunkte”, Habilitationsschrift, Ackermann, München, 1889.
G.R. Burton, Sections of convex bodies, J. London Math. Soc. 12 (1975/76), 331 – 336.
G.R. Burton, P. Mani, A characterisation of the ellipsoid in terms of concurrent sections, Comment. Math. Helv. 53 (1978), 485 – 507.
H. Busemann, C.M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88 – 94.
G. Choquet, Unicité des représentations intégrales au moyen de points extrémaux dans les cônes convexes réticulés, C. R. Acad. Sci. Paris 243 (1956), 555 – 557.
H.S.M. Coxeter, “Regular Polytopes”, Methuen & Co., Ltd., London; Pitman Publishing Corp., New York, 1948.
H.S.M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. 41 (1962), 137 – 156.
B.N. Delaunay, Sur la partition regulière de l’espace à 4-dimensions, I and II, Izv. Akad. Nauk. Ser. Mat. (1929), 79 – 110 and 147 – 164.
B.N. Delaunay, Sur la generalisation de la théorie des paralléloèdres, Izv. Akad. Nauk. Ser. Mat. (1933), 641 – 646.
B.N. Delaunay, Neue Darstellung der geometrischen Kristallographie, Z. Kristal. 84 (1933), 109 – 149.
M. Deza, V.P. Grishukhin, More about the 52 four-dimensional parallelotopes, Taiwanese J. Math. 12 (2008), 901 – 916.
N.P. Dolbilin, Properties of faces of parallelohedra, Tr. Mat. Inst. Steklova 266 (2009), 112 – 126.
N.P. Dolbilin, M.A. Kozachok, On polyhedra with centrally symmetric faces, Chebyshevskiı̆ Sb. 11 (2010), 109 – 115.
P. Engel, “Geometric crystallography. An axiomatic introduction to cristallography”, D. Reidel Publishing Company, Dordrecht, 1986.
P. Engel, The contraction types of parallelohedra in E 5 , Acta Cryst. Sect. A 56 (2000), 491 – 496.
E.S. Fedorov, “Elements of the theory of figures”, Imperial Petersburg Mineralogical Society, St. Petersburg, 1885.
R. Fourneau, Nonclosed simplices and quasi-simplices, Mathematika 24 (1977), 71 – 85.
R.J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 355 – 405.
R.J. Gardner, “Geometric tomography. Second edition”, Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006.
R.J. Gardner, A. Volčič, Convex bodies with similar projections, Proc. Amer. Math. Soc. 121 (1994), 563 – 568.
M.A. Goberna, E. González, J.E. Martı́nez-Legaz, M.I. Todorov, Motzkin decomposition of closed convex sets, J. Math. Anal. Appl. 364 (2010), 209 – 221.
V.P. Golubyatnikov, On the determination of the form of a body from its projections, Dokl. Akad. Nauk SSSR 262 (1982), 521 – 522.
V.P. Golubyatnikov, On the unique determination of visible bodies from their projections, Sibirsk. Mat. Zh. 29 (1988), 92 – 96.
V.P. Golubyatnikov, On the unique reconstructibility of compact convex sets from their projections, Sibirsk. Mat. Zh. 31 (1990), 196 – 199.
V.P. Golubyatnikov, On the unique reconstructibility of convex and visible compact sets from their projections. II, Sibirsk. Mat. Zh. 36 (1995), 301 – 307.
V.P. Golubyatnikov, “Uniqueness questions in reconstruction of multidimensional objects from tomography-type projection data”, De Gruyter, Utrecht, 2000.
P.R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983), 25 – 34.
P.R. Goodey, R. Schneider, W. Weil, Projection functions of convex bodies, in: “Intuitive geometry” (Proceedings of the 5th Conference held in Budapest, September 3 - 8, 1995. Edited by Imre Bárány and Károly Böröczky)”, Bolyai Soc. Math. Stud., 6, Budapest, 1997, 23 – 53.
P.R. Goodey, The determination of convex bodies from the size and shape of their projections and sections, in “Convex and fractal geometry”, R.J. MacG. Dawson, et al. (eds), Banach Center Publ., 84, Warsaw, 2009, 13 – 30.
H. Groemer, Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren, Monatsh. Math. 65 (1961), 74 – 81.
H. Groemer, Ein Satz über konvexe Körper und deren Projektionen, Portugal. Math. 21 (1962), 41 – 43.
H. Groemer, Über die Zerlegung eines konvexen Körpers in homothetische konvexe Körper, Math. Ann. 154 (1964), 88 – 102.
H. Groemer, Über die Zerlegung des Raumes in homothetische konvexe Körper, Monatsh. Math. 68 (1964), 21 – 32.
H. Groemer, Über translative Zerlegungen konvexer Körper, Arch. Math. (Basel) 19 (1968), 445 – 448.
H. Groemer, On translative subdivisions of convex domains, Enseign. Math. (2) 20 (1974), 227 – 231.
H. Groemer, Stability theorems for projections of convex sets, Israel J. Math. 60 (1987), 177 – 190.
H. Groemer, On the determination of convex bodies by translates of their projections, Geom. Dedicata 66 (1997), 265 – 279.
P.M. Gruber, Über kennzeichnende Eigenschaften von eukclidischen Räumen und Ellipsoiden. II, J. Reine Angew. Math. 270 (1974), 123 – 142.
P.M. Gruber, “Convex and discrete geometry”, Grundlehren Math. Wiss., 336, Springer, Berlin, 2007.
B. Grünbaum, G.C. Shephard, Tiling with congruent tiles, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 951 – 973.
H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt, Math. Z. 53 (1950), 210 – 218.
H. Hadwiger, Seitenrisse konvexer Körper und Homothetie, Elem. Math. 18 (1963), 97 – 98.
E. Heil, H. Martini, Special convex bodies, in “Handbook of convex geometry, Vol. A,B”, P.M. Gruber, J.M. Wills (eds), North-Holland Publishing Co., Amsterdam, 1993, 347 – 385.
D. Hinrichsen, U. Krause, Choice of techniques in joint production models, in “Third Symposium on Operations Research. Section 4. Mathematical Economics” (Held at the University of Mannheim, Mannheim, September 6 - 8, 1978, Edited by W. Oettli and F. Steffens), Operations Res. Verfahren, 34, Verlag Anton Hain, Königstein/Ts., 1979, 155 – 171.
D. Hinrichsen, U. Krause, Unique representation in convex sets by extraction of marked components, Linear Algebra Appl. 51 (1983), 73 – 96.
J. Jerónimo-Castro, L. Montejano, E. Morales-Amaya, Shaken Rogers’s theorem for homothetic sections, Canad. Math. Bull. 52 (2009), 403 – 406.
A.B. Kharazishvili, Characterization properties of a parallelepiped, Sakharth. SSR Mecn. Akad. Moambe 72 (1973), 17 – 19.
T. Kubota, Ein synthetischer Beweis eines Satzes über Eiflächen, Jap. J. Math. 7 (1930), 171 – 172.
J. Lawrence, V. Soltan, On unions and intersections of nested families of cones, Beitr. Algebra Geom. 57 (2016), 655 – 665.
K. Leichtweiß, “Konvexe Mengen”, Springer-Verlag, Berlin-New York, 1980.
E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), 232 – 261.
E. Lutwak, Selected affine isoperimetric inequalities, in “Handbook of convex geometry, Vol. A, B”, North-Holland Publishing Co., Amsterdam, 1993, 151 – 176.
B. Mackey, SO(2)-congruent projections of convex bodies with rotation about the origin, Proc. Amer. Math. Soc. 143 (2015), 1739 – 1744.
H. Martini, L. Montejano, D. Oliveros, “Bodies of constant width”, Birkhäuser/Springer, Cham, 2019.
P. McMullen, Polytopes with centrally symmetric faces, Israel J. Math. 8 (1970), 194 – 196.
P. McMullen, Polytopes with centrally symmetric facets, Israel J. Math. 23 (1976), 337 – 338.
P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980), 113 – 121.
P. McMullen, Convex bodies which tile space, in “The geometric vein”, Springer-Verlag, New York-Berlin, 1981, 123 – 128.
P. McMullen, “Geometric regular polytopes”, Encyclopedia Math. Appl., 172, Cambridge University Press, Cambridge, 2020.
E. Milman, S. Shabelman, A. Yehudayoff, Fixed and periodic points of the intersection body operator, arXiv:2408.08171v3, 2 Sep. 2024, 47 pp.
H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Konigl. Ges. Wiss. Göttingen (1897), 198 – 219.
H. Minkowski, “Geometrie der Zahlen. I”. Teubner, Leipzig, 1896; “II”. Teubner, Leipzig, 1910.
L. Montejano, Two applications of topology to convex geometry, Tr. Mat. Inst. Steklova 247 (2004), 182 – 185
W. Moser, An enumeration of the five parallelohedra, Canad. Math. Bull. 4 (1961), 45 – 47.
S. Myroshnychenko, D. Ryabogin, On polytopes with congruent projections or sections, Adv. Math. 325 (2018), 482 – 504.
S. Nakajima, Über homothetische Eiflächen, Jap. J. Math. 7 (1930), 167 – 169.
S. Nakajima, Eine Kennzichnung homothetischer Eiflächen, Tôhoku Math. J. 35 (1932), 285 – 286.
S.P. Olovjanishnikov, On a characterization of the ellipsoid, Učen. Zap. Leningrad. State Univ. Ser. Mat. 83 (1941), 114 – 128.
C.M. Petty, Ellipsoids, in “Convexity and its applications”, edited by P.M. Gruber and J.M. Wills, Birkhäuser Verlag, Basel-Boston, Mass., 1983, 264 – 276.
C.M. Petty, J.R. McKinney, Convex bodies with circumscribing boxes of constant volume, Portugal. Math. 44 (1987), 447 – 455.
R.R. Phelps, “Lectures on Choquet’s theorem”, Second edition, Lecture Notes in Math., 1757, Springer-Verlag, Berlin, 2001.
R.T. Rockafellar, “Convex analysis”, Princeton Math. Ser., No. 28, Princeton University Press, Princeton, NJ, 1970.
C.A. Rogers, Sections and projections of convex bodies, Portugal. Math. 24 (1965), 99 – 103.
C.A. Rogers, G.C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220 – 233.
D. Ryabogin, On the continual Rubik’s cube, Adv. Math. 231 (2012), 3429 – 3444.
D. Ryabogin, A lemma of Nakajima and Süss on convex bodies, Amer. Math. Monthly 122 (2015), 890 – 892.
G.T. Sallee, On the indecomposability of the cone, J. London Math. Soc. (2) 9 (1974/75), 363 – 367.
G.T. Sallee, Tiling convex sets by translates, Israel J. Math. 24 (1976), 368 – 376.
R. Schneider, “Convex bodies: the Brunn-Minkowski theory”, second expanded edition, Encyclopedia Math. Appl., 151, Cambridge University Press, Cambridge, 2014.
G.C. Shephard, Polytopes with centrally symmetric faces, Canadian J. Math. 19 (1967), 1206 – 1213.
C. Schütt, E. Werner, Homothetic floating bodies, Geom. Dedicata 49 (1994), 335 – 348.
V. Soltan, A characterization of homothetic simplices, Discrete Comput. Geom. 22 (1999), 193 – 200.
V. Soltan, Choquet simplexes in finite dimension – a survey, Expo. Math. 22 (2004), 301 – 315.
V. Soltan, Pairs of convex bodies with centrally symmetric intersections of translates, Discrete Comput. Geom. 33 (2005), 605 – 616.
V. Soltan, Sections and projections of homothetic convex bodies, J. Geom. 84 (2005), 152 – 163.
V. Soltan, Addition and subtraction of homothety classes of convex sets, Beiträge Algebra Geom. 47 (2006), 351 – 361.
V. Soltan, Line-free convex bodies with centrally symmetric intersections of translates, Rev. Roumaine Math. Pures Appl. 51 (2006), 111 – 123.
V. Soltan, Convex solids with planar homothetic sections through given points, J. Convex Anal. 16 (2009), 473 – 486.
V. Soltan, Convex sets with homothetic projections, Beiträge Algebra Geom. 51 (2010), 237 – 249.
V. Soltan, A characteristic intersection property of generalized simplices, J. Convex Anal. 18 (2011), 529 – 543.
V. Soltan, Convex hypersurfaces with hyperplanar intersections of their homothetic copies, J. Convex Anal. 22 (2015), 145 – 159.
V. Soltan, Characteristic properties of ellipsoids and convex quadrics, Aequationes Math. 93 (2019), 371 – 413.
V. Soltan, “Lectures on convex sets”, second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
V. Soltan, On M-decomposable sets, J. Math. Anal. Appl. 485 (2020), Art. 123816, 15 pp.
V. Soltan, On M-predecomposable sets, Beitr. Algebra Geom. 62 (2021), 205 – 218.
V. Soltan, Boundedly polyhedral sets and F -simplices, J. Convex Anal. 29 (2022), 807 – 826.
V. Soltan, Projections and generated cones of homothetic convex sets, Beitr. Algebra Geom. 64 (2023), 127 – 143.
M.I. Shtogrin, “Regular Dirichlet-Voronoı̆ partitions for the second triclinic group”, Proceedings of the Steklov Institute of Mathematics, No. 123 (1973); American Mathematical Society, Providence, RI, 1975.
A. Stancu, The floating body problem, Bull. London Math. Soc. 38 (2006), 839 – 846.
W. Süss, Zu Minkowskis Theorie von Volumen und Oberfläche, Math. Ann. 101 (1929), 253 – 260.
W. Süss, Zusammensetzung von Eikörpern und Homothetische Eiflächen, Tôhoku Math. J. 35 (1932), 47 – 50.
J. Székely, The orthogonal projections and homotheticity of convex bodies, Mat. Lapok 16 (1965), 52 – 56.
B.A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Him. 9 (1954), 11 – 31.
G. Voronoı̆, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs, I, J. Reine Angew. Math. 134 (1908), 198 – 287.
G. Voronoı̆, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs, II, J. Reine Angew. Math. 136 (1909), 67 – 182.
E. Werner, D. Ye, On the homothety conjecture, Indiana Univ. Math. J. 60 (2011), 1 – 20.
N. Zhang, On bodies with congruent sections or projections, J. Differential Equations 265 (2018), 2064 – 2075.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 The author
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.