Powers in Alternating Simple Groups

Autores/as

  • J. Martínez Carracedo Departamento de Matemáticas, Universidad de Oviedo c/ Calvo Sotelo, s/n, 33007 Oviedo, Spain

DOI:

https://doi.org/10.17398/

Palabras clave:

Alternating groups, simple groups, power subgroups, word maps

Resumen

C. Martínez and E. Zelmanov proved in [12] that for every natural number d and every finite simple group G, there exists a function N = N(d) such that either G^d = 1 or G = {a_1^d, ... , a_N^d : ai \in G}.

In a more general context the problem of finding words w such that the word map (g1; ...; gd) --> w(g1; ... ; gd) is surjective for any finite non abelian simple group is a major challenge in Group Theory. In [8] authors give the first example of a word map which is surjective on all finite non-abelian simple groups, the commutator [x; y] (Ore Conjecture).

In [11] the conjecture that this is also the case for the word x2y2 is formulated. This conjecture was solved in [9] and, independently, in [6], using deep results of algebraic simple groups and representation theory. An elementary proof of this result for alternating simple groups is presented here.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

E. Bertran, Even permutations as a product of two conjugate cycles, J. Combin. Theory Ser. A 12 (1972), 368 – 380.

E. Bertran, Powers of cycle-classes in symmetric groups, J. Combin. Theory Ser. A 94 (1) (2001), 87 – 99.

V.I. Chernousov, E.W. Ellers, N.L. Gordeev, Gauss decomposition with prescribed semisimple part: short proof, J. Algebra 229 (1) (2000), 314 – 332.

E.W. Ellers, N.L. Gordeev, On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math. Soc. 350 (9) (1998), 3657 – 3671.

W.J. Ellision, Warings’s problem, Amer. Math. Monthly 78 (1) (1971), 10 – 36.

R. Guralnick, G. Malle, Products of conjugacy classes and fixed point spaces, J. Amer. Math. Soc. 25 (1) (2012), 77 – 121.

M. Larsen, A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2) (2009), 437 – 466.

M.W. Liebeck, E.A. O'Brien, A. Shalev, P.H. Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS) 12 (4) (2010), 939 – 1008.

M.W. Liebeck, E.A. O'Brien, A. Shalev, P.H. Tiep, Products of squares in finite simple groups, Proc. Amer. Math. Soc. 140 (1) (2012), 21 – 33.

M.W. Liebeck, A. Shalev, Diameters of finite simple groups: sharp bounds and applications, Ann. of Math. (2) 154 (2) (2001), 383 – 406.

M.J. Larsen, A. Shalev, P.H. Tiep, The Waring problem for finite simple groups, Ann. of Math. (2) 174 (3) (2011), 1885 – 1950.

C. Martinez, E.I. Zelmanov, Products of powers in finite simple groups, Israel J. Math. 96 (1996), part B, 469 – 479.

O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1952), 307 – 314.

J. Saxl, J.S. Wilson, A note on powers in simple groups, Math. Proc. Cambridge Philos. Soc. 122 (1) (1997), 91 – 94.

J.S. Wilson, First-order group theory, in “ Infinite groups 1994 ”, Proceedings of the International Conference held in Ravello, May 23-27, 1994 (edited by F. de Giovanni and M.L. Newell), Walter de Gruyter & Co., Berlin, 1996, 301 – 314.

Descargas

Publicado

2015-12-01

Número

Sección

Group Theory

Cómo citar

Powers in Alternating Simple Groups. (2015). Extracta Mathematicae, 30(2), 251-262. https://doi.org/10.17398/