Jordan Derivations on Triangular Matrix Rings

Autores/as

  • Bruno Ferreira Technological Federal University of Paraná, Professora Laura Pacheco Bastos Avenue, 800, 85053-510 Guarapuava, Brazil

DOI:

https://doi.org/10.17398/

Palabras clave:

Additivity, Jordan derivation, triangular matrix ring, nest algebras

Resumen

Guided by the research line introduced by Martindale III in [5] on the study of the additivity of maps, this article aims establish conditions on triangular matrix rings in order that an map φ satisfying

φ(ab + ba) = φ(a)b + aφ(b) + φ(b)a + bφ(a)

for all a, b in a triangular matrix ring becomes additive.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

W.S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. (2) 63 (1) (2001), 117 – 127.

M. Daif, When is a multiplicative derivation additive?, Internat. J. Math. and Math. Sci. 14 (3) (1991), 615 – 618.

K.R. Davidson, “Nest Algebras”, Pitman Research Notes in Mathematics Series, 191, Longman Scientific & Technical, Harlow, 1988.

B.L.M. Ferreira, Multiplicative maps on triangular n-matrix rings, International Journal of Mathematics, Game Theory and Algebra 23 (2014), 1 – 14.

W.S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695 – 698.

Y. Wang, The additivity of multiplicative maps on rings, Communications in Algebra 37 (7) (2009), 2351 – 2356.

Y.Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra and its Applications 434 (3) (2011), 625 – 635.

Descargas

Publicado

2015-12-01

Número

Sección

Operator Theory

Cómo citar

Jordan Derivations on Triangular Matrix Rings. (2015). Extracta Mathematicae, 30(2), 181-190. https://doi.org/10.17398/