Some operators on finite-dimensional non-Archimedean normed spaces
DOI:
https://doi.org/10.17398/2605-5686.39.2.255Keywords:
Non-Archimedean normed space, t-Orthogonal basis, p-delta function, Simple operator, Similarity, Isometry, ExpansionAbstract
In this paper, we are interested in the study of certain operators in non-Archimedean normed spaces of finite dimension. We introduce the notion of p-delta function, then we characterize the simple operators, the similarities and the expansions. We show if E has an orthogonal basis, then each injective operator on E is the composition of an isometry and an expansion.
Downloads
References
J. Cabello Sánchez, J. Navarro Garmendia, Isometries of ultrametric normed spaces, Ann. Funct. Anal. 12 (2021), 11 pp., DOI: 10.1007/s43034-021-00144-7.
A. Kubzdela, Isometries, Mazur–Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces, Nonlinear Analysis: Theory, Methods and Applications, 75, pp. 2060-2068 (2012) DOI: 10.1016/j.na.2011.10.006.
A.F. Monna, Analyse Non-archimédienne, Berlin-Springer (1970).
C. Perez-Garcı́a, W.H. Schikkof, Locally Convex Spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics 119, (2010).
A.C.M. van Rooij, Non-Archimedean Functional analysis, New York, Dekker, (1978).
A.C.M. van Rooij, Notes on p-Adic Banach Spaces, Report 7633, Math. Inst. Kathol. Univ. Nijmegen, (1976).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The author
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.