On isolated points of the approximate point spectrum of a closed linear relation
DOI:
https://doi.org/10.17398/2605-5686.37.1.75Keywords:
Linear relation, isolated point of the approximate point spectrum, analytic core, quasinilpotent partAbstract
We investigate in this paper the isolated points of the approximate point spectrum of a closed linear relation acting on a complex Banach space by using the concepts of quasinilpotent part and the analytic core of a linear relation.
Downloads
References
T. Álvarez, On regular linear relations, Acta Math. Sin. (Engl. Ser.) 28(2) (2012) 183-194.
T. Álvarez, M. Benharrat, Relationship between the Kato spectrum and the Goldberg spectrum of a linear relation. Mediterr. J. Math. 13 (2016), no. 1, 365-378.
T. Álvarez, A. Sandovici, Regular linear relations on Banach spaces. Banach J. Math. Anal. 15 (2021), no. 1, Paper No. 4, 26.
Y. Chamkha, M. Kammoun, On perturbation of Drazin invertible linear relations, to appear in Ukrainian Mathematical Journal (2021).
R. W. Cross, Multivalued linear operators, Pure and Applied Mathematics, Marcel Dekker, (1998).
A. Favini, A. Yagi, Multivalued linear operators and degenerate evolution equations, Annali di Mat. Pura Appl. 163, 353-384 (1993).
A. Ghorbel, M. Mnif, Drazin inverse of multivalued operators and its applications, Monatsh Math (2019) 273-293.
M. González, M. Mbekhta, M. Oudghiri, On the isolated points of the surjective spectrum of a bounded operator. Proc. Amer. Math. Soc. 136 (2008), no. 10, 3521-3528.
M. Lajnef, M. Mnif, Isolated spectral points of a linear relation. Monatsh. Math. 191 (2020), pp. 595-614.
M. Lajnef, M. Mnif, On generalized Drazin invertible linear relations. Rocky Mountain J. Math. 50 (2020), no. 4, 1387-1408.
M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), pp. 159-175.
M. Mnif and A.A. Ouled-Hmed, Analytic core and quasi-nilpotent part of linear relations in Banach spaces, Filomat 32 (2018), no 7, 2499-2515.