The geometry of L(3l2∞) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials

doi:10.17398/2605-5686.33.1.51

Authors

  • Sung Guen Kim Department of Mathematics, Kyungpook National University Daegu 702 − 701, South Korea

Keywords:

Extreme points, exposed points, the optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials

Abstract

We classify the extreme and exposed 3-linear forms of the unit ball of L(3l2). We introduce optimal constants in the Bohnenblust-Hille inequality for symmetric multilinear forms and polynomials and investigate about their relations.

Downloads

Download data is not yet available.

References

R.M. Aron, Y.S. Choi, S.G. Kim, M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45 (1) (2001), 25 – 39.

C. Boyd, R.A. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, J. Funct. Anal. 179 (1) (2001), 18 – 42.

W. Cavalcante, D. Pellegrino, Geometry of the closed unit ball of the space of bilinear forms on l∞ 2, arXiv:1603.01535v2.

Y.S. Choi, H. Ki, S.G. Kim, Extreme polynomials and multilinear forms on l1 , J. Math. Anal. Appl. 228 (2) (1998), 467 – 482.

Y.S. Choi, S.G. Kim, The unit ball of P(2 l2 2), Arch. Math. (Basel) 71 (6) (1998), 472 – 480.

Y.S. Choi, S.G. Kim, Extreme polynomials on c0, Indian J. Pure Appl. Math. 29 (10) (1998), 983 – 989.

Y.S. Choi, S.G. Kim, Smooth points of the unit ball of the space P(2 l1 ), Results Math. 36 (1-2) (1999), 26 – 33.

Y.S. Choi, S.G. Kim, Exposed points of the unit balls of the spaces P(2 lp 2) (p = 1, 2, ∞), Indian J. Pure Appl. Math. 35 (1) (2004), 37 – 41.

V. Dimant, D. Galicer, R. Garcı́a, Geometry of integral polynomials, M -ideals and unique norm preserving extensions, J. Funct. Anal. 262 (5) (2012), 1987 – 2012.

S. Dineen, “Complex Analysis on Infinite Dimensional Spaces”, Springer- Verlag, London, 1999.

S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (1) (2003), 129 – 140.

D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane- Sepúlveda, Lower bounds for the constants in the Bohnenblust-Hille in- equality: the case of real scalars, Proc. Amer. Math. Soc. 142 (2) (2014), 575 – 580.

B.C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J. Math. Anal. Appl. 273 (2) (2002), 262 – 282.

B.C. Grecu, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, Unconditional constants and polynomial inequalities, J. Approx. Theory 161 (2) (2009), 706 – 722.

S.G. Kim, Exposed 2-homogeneous polynomials on P(2 lp 2) (1 ≤ p ≤ ∞), Math. Proc. R. Ir. Acad. 107A (2) (2007), 123 – 129.

S.G. Kim, The unit ball of Ls (2l∞), 2 Extracta Math. 24 (1) (2009), 17 – 29.

S.G. Kim, The unit ball of P(2 d∗(1, w)2 ), Math. Proc. R. Ir. Acad. 111A (2) (2011), 79 – 94.

S.G. Kim, The unit ball of Ls (2d∗ (1, w)2), Kyungpook Math. J. 53 (2) (2013), 295 – 306.

S.G. Kim, Smooth polynomials of P(2d∗ (1, w)2 ), Math. Proc. R. Ir. Acad. 113A (1) (2013), 45 – 58.

S.G. Kim, Extreme bilinear forms of L(2 d∗(1, w)2 ), Kyungpook Math. J. 53 (4) (2013), 625 – 638.

S.G. Kim, Exposed symmetric bilinear forms of Ls(2 d∗(1, w)2 ), Kyungpook Math. J. 54 (3) (2014), 341 – 347.

S.G. Kim, Exposed bilinear forms of L(2 d∗(1, w)2 ), Kyungpook Math. J. 55 (1) (2015), 119 – 126.

S.G. Kim, Exposed 2-homogeneous polynomials on the 2-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (5) (2016), 2827 – 2839.

S.G. Kim, The geometry of L(2l∞ 2 ), to appear in Kyungpook Math. J. 58 (2018).

S.G. Kim, The unit ball of Ls(2 l∞ 3 ), Comment. Math. Prace Mat. 57 (1) (2017), 1 – 7.

S.G. Kim, The geometry of Ls(3 l∞ 2 ), Commun. Korean Math. Soc. 32 (4) (2017), 991 – 997.

S.G. Kim, S.H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2) (2003), 449 – 453.

J. Lee, K.S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305 (1) (2005), 219 – 226.

G.A. Muñoz-Fernández, S. Révész, J.B. Seoane-Sepúlveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (1) (2009), 147 – 160.

G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2) (2008), 1069 – 1087.

R.A. Ryan, B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (2) (1998), 698 – 711.

W.M. Ruess, C.P. Stegall, Extreme points in duals of operator spaces, Math. Ann. 261 (4) (1982), 535 – 546.

Downloads

Published

2018-06-01

Issue

Section

Banach Spaces and Operator Theory

How to Cite

The geometry of L(3l2∞) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials : doi:10.17398/2605-5686.33.1.51. (2018). Extracta Mathematicae, 33(1), 51-66. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.33.1.51