On Generalized Lie Bialgebroids and Jacobi Groupoids

Authors

  • Apurba Das Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India

Keywords:

Jacobi manifolds, coisotropic submanifolds, (generalized) Lie bialgebroids, Jacobi groupoids

Abstract

Generalized Lie bialgebroids are generalization of Lie bialgebroids and arises naturally from Jacobi manifolds. It is known that the base of a generalized Lie bialgebroid carries a Jacobi structure. In this paper, we introduce a notion of morphism between generalized Lie bialgebroids over a same base and prove that the induce Jacobi structure on the base is unique up to a morphism. Next we give a characterization of generalized Lie bialgebroids and use it to show that generalized Lie bialgebroids are infinitesimal form of Jacobi groupoids. We also introduce coisotropic subgroupoids of a Jacobi groupoid and these subgroupoids corresponds to, so called coisotropic subalgebroids of the corresponding generalized Lie bialgebroid.

Downloads

References

Y. Hagiwara, Nambu-Jacobi structures and Jacobi algebroids, J. Phys. A: Math. Gen. 37 (26) (2004), 6713 – 6725.

P. J. Higgins, K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1) (1990), 194 – 230.

R. Ibáñez, M. de León, J. C. Marrero, D. Martı́n de Diego, Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms, J. Phys. A: Math. Gen. 30 (15) (1997), 5427 – 5444.

D. Iglesias, “Grupos y Grupoides de Lie y Estructuras de Jacobi”, Ph.D Thesis, Universidad de la Laguna, 2003.

D. Iglesias, J. C. Marrero, Some linear Jacobi structures on vector bundles, C. R. Acad. Sci., Paris I, Math. 331 (2) (2000), 125 – 130.

D. Iglesias and J. C. Marrero, Generalized Lie bialgebroids and Jacobi structure, J. Geom. Phys. 40 (2) (2001), 176 – 199.

D. Iglesias, J. C. Marrero, Generalized Lie Bialgebroids and Strong Jacobi-Nijenhuis Structures, Extracta Math. 17 (2) (2002), 259 – 271.

D. Iglesias, J. C. Marrero, Generalized Lie bialgebras and Jacobi structures on Lie groups, Israel J. Math. 133 (2003), 285 – 320.

D. Iglesias, J. C. Marrero, Jacobi groupoids and generalized Lie bialgebroids, J. Geom. Phys. 48 (2-3) (2003), 385 – 425.

K. C. H. Mackenzie, “Lie Groupoids and Lie Algebroids in Differential Geometry”, London Mathematical Society Lecture Note Series 124, Cambridge University Press, Cambridge, 2005.

K. C. H. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (2) (1994), 415 – 452.

K. C. H. Mackenzie, P. Xu, Classical lifting process and multiplicative vector fields, Quart. J. Math. 49 (193) (1998), 59 – 85.

Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1-3) (1995), 153 – 165.

I. Vaisman, “Lectures on the Geometry of Poisson Manifolds”, Progress in Mathematics 118, Birkhäuser Verlag, Basel, 1994.

A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (4) (1988), 705-727.

P. Xu, On Poisson groupoids, Inter. J. Math. 6 (1) (1995), 101 – 124.

Downloads

Published

2016-12-01

Issue

Section

Differential Geometry

How to Cite

On Generalized Lie Bialgebroids and Jacobi Groupoids. (2016). Extracta Mathematicae, 31(2), 199-225. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.31.2.199