Algebraic realization of chain maps in differential graded algebras over a principal ideal domain
DOI:
https://doi.org/10.17398/Keywords:
Free chain algebras, n-characteristic extensions, Coherent morphisms, Adams-Hilton modelAbstract
Let R be a principal ideal domain, and let (T (V ), ∂) and (T (W ), δ) be two free differential graded R-algebras. Let (V, d) and (W, d0 ) denote the chain complexes of the indecomposables of (T (V ), ∂) and (T (W ), δ), respectively. Given a chain map ξ* : (V, d) → (W, d'), this paper addresses the problem of determining whether there exists a DGA-map α : (T (V ), ∂) → (T (W ), δ) such that H* (α) = H* (ξ* ).
Downloads
References
J.F. Adams, P.J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305 – 335.
M. Benkhalifa, On the group of self-homotopy equivalences of a 2-connected and 6-dimensional CW-complex, Homology Homotopy Appl. 26 (1) (2024), 151 – 168.
M. Benkhalifa, On the classification problem of the quasi-isomorphism classes of free chain algebras, J. Pure Appl. Algebra 210 (2) (2007), 343 – 362.
M. Benkhalifa, On the classification problem of the quasi-isomorphism classes of 1-connected minimal free cochain algebras, Topology Appl. 155 (2008), 1350 – 1370.
M. Benkhalifa, On the homotopy type of a chain algebra, Homology Homotopy Appl. 6 (2004), 109 – 136.
J.C. Moore, Comparaison de la bar-construction à la construction W et aux complexes K(π, n), Séminaire Henri Cartan 7 (2) (1954-1955), exp. no. 13, 1 – 11.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The author

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









