A study on W9-curvature tensor within the framework of Lorentzian para-Sasakian manifold
DOI:
https://doi.org/10.17398/Keywords:
W9 -curvature tensor, Lorentzian para-Sasakian manifolds, η-Einstein manifolds, η-Ricci solitonsAbstract
This article focuses on the study of Lorentzian para-Sasakian manifolds Mn . It demonstrates that a W9-semisymmetric Lorentzian para-Sasakian manifold is a W9-flat manifold. Additionally, we explore Lorentzian para-Sasakian manifolds that satisfy the ζ-W9-flat condition, revealing that they represent a special type of η-Einstein manifold. Furthermore, it is shown that a W9-flat Lorentzian para-Sasakian manifold is a flat manifold. We also investigate Lorentzian para-Sasakian manifolds that meet W9-recurrent and ϕ-W9-semisymmetric conditions, presenting several significant results from this analysis. At last, we explore η-Ricci Solitons on Lorentzian para-Sasakian manifold satisfying W9(ζ, F1 ) · S = 0.
Downloads
References
W. Batat, M. Brozos-Vázquez, E. Garcı́a-Rı́o, S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc. 43 (6) (2011), 1219 – 1227.
A.M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (1) (2015), 1 – 13.
A.M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2) (2016), 489 – 496.
M. Brozos-Vázquez, G. Calvaruso, E. Garcı́a-Rı́o, S. Gavino-Fernández, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math. 188 (2012), 385 – 403.
C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f -Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (3) (2010), 361 – 368.
T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B 478 (3) (1996), 758 – 778.
T. Chave, G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta 69 (3) (1996), 344 – 347.
J.T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2) (2009), 205 – 212.
U.C. De, K. Matsumoto, A.A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina 3 (1999), 149 – 158.
U.C. De, A.A. Shaikh, On 3-dimensional LP-Sasakian manifolds, Soochow J. Math. 26 (2000), 359 – 368.
S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55(103) (1) (2012), 41 – 50.
S. Deshmukh, H. Alodan, H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl. 16 (1) (2011), 48 – 55.
D.H. Friedan, Nonlinear models in 2+ε dimensions, Ann. Phys. 163 (2) (1985), 318 – 419.
R.S. Hamilton, The Ricci flow on surfaces, in “Mathematics and general relativity (Santa Cruz, CA, 1986)”, Contemp. Math. 71, American Mathematical Society, Providence, 1988, 237 – 262.
G. Ingalahalli, S.C. Anil, C.S. Bagewadi, A study on W8 -curvature tensor in Kenmotsu manifolds, International Journal of Mathematics And its Applications 8 (2) (2020), 27 – 34.
T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (4) (1993), 301 – 307.
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151 – 156.
K. Matsumoto, I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), 189 – 197.
K. Matsumoto, I. Mihai, R. Roşca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32 (1995), 17 – 31.
I. Mihai, R. Roşca, On Lorentzian P -Sasakian manifolds in “Classical analysis (Kazimierz Dolny, 1991)”, World Scientific Publishing Co., River Edge, 1992, 155 – 169.
I. Mihai, A.A. Shaikh, U.C. De, On Lorentzian para-Sasakian manifolds, Korean J. Math. Sciences 6 (1999), 1 – 13. Rendiconti Sem. Mat. Messina, Series II, (1999).
A.K. Mishra, P. Prajapati, Rajan, G.P. Singh, On M -projective curvature tensor of Lorentzian β-Kenmotsu manifold, Bull. Transilv. Univ. Braşov Ser. III Math. Comput. Sci. 4(66) (2) (2024), 201 – 214.
K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata 147 (2010), 313 – 322.
C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds, Rad. Mat. 12 (2003), 99 – 106.
P. Prajapati, G.P. Singh, Rajan, A.K. Mishra, A study on W8 - curvature tensor in Lorentzian β-Kenmotsu manifold, J. Rajasthan Acad. Phys. Sci. 22 (2023) 225 – 235.
D.G. Prakasha, B.S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2) (2017), 383 – 392.
Rajan, G.P. Singh, P. Prajapati, A.K. Mishra, W8 -Curvature Tensor in Lorentzian α-Sasakian Manifolds, Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11 (3) (2020), 1061 – 1072.
G.P. Singh, A.K. Mishra, P. Prajapati, Rajan, A Study on W1 - Curvature Tensor in LP -Kenmotsu Manifolds, Journal of Propulsion Technology 45 (2) (2024), 4149 – 4158.
G.P. Singh, A.K. Mishra, Rajan, P. Prajapati, A.P. Tiwari, A study on W8 -curvature tensor in ϵ-Kenmotsu manifolds, GANITA 72 (2) (2022), 115 – 126.
G.P. Singh, P. Prajapati, A.K. Mishra, Rajan, Generalized B-curvature tensor within the framework of Lorentzian β-Kenmotsu manifold, Int. J. Geom. Methods Mod. Phys. 21 (2) (2024), Paper No. 2450125, 14 pp.
G.P. Singh, R. Rajan, A.K. Mishra, P. Prajapati, W8 -Curvature tensor in generalized Sasakian-space-forms, Ratio Mathematica 48 (2023), 51 – 62.
G.P. Singh, S.K. Srivastava, On Einstein Nearly Kenmotsu Manifolds, International Journal Of Mathematics Research 8 (1) (2016), 19 – 24.
G.P. Singh, S.K. Srivastava, On Kenmotsu Manifold With Quarter Symmetric Non Metric ϕ-Connection, International Journal of Pure and Applied Mathematical Sciences 9 (1) (2016), 67 – 74.
M.M. Tripathi, P. Gupta, τ -curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies 4 (1) (2011), 117 – 129.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.