Banach Lattices with the Positive Dunford-Pettis Relatively Compact Property

Authors

  • Kamal El Fahri Universite Ibn Tofail, Faculte des Sciences, Departement de Mathematiques, B.P. 133, Kenitra 14000, Morocco
  • Nabil Machrafi Universite Ibn Tofail, Faculte des Sciences, Departement de Mathematiques, B.P. 133, Kenitra 14000, Morocco
  • Mohammed Moussa Universite Ibn Tofail, Faculte des Sciences, Departement de Mathematiques, B.P. 133, Kenitra 14000, Morocco

DOI:

https://doi.org/10.17398/

Keywords:

positive Dunford-Pettis relatively compact property, almost Dunford-Pettis completely continuous operator, almost Dunford-Pettis set, Banach lattice

Abstract

The paper is devoted to such Banach lattices E that every Dunford-Pettis and weakly null sequence (xn)   E with disjoint terms is norm null (the positive Dunford-Pettis relatively compact property). It is established that a Banach lattice E has the positive Dunford-Pettis relatively compact property if and only if its almost Dunford-Pettis subsets are L-weakly compact. Consequently, we derive the following result: Banach lattices with the property that their almost Dunford-Pettis subsets are relatively compact, are precisely the discrete KB-spaces.

Downloads

Download data is not yet available.

References

C.D. Aliprantis, O. Burkinshaw, “Locally Solid Riesz Spaces”, Pure and Applied Mathematics 76, Academic Press, New York-London, 1978.

C.D. Aliprantis, O. Burkinshaw, “Positive Operators”, Reprint of the 1985 original, Springer, Dordrecht, 2006.

B. Altin, On b-weakly compact operators on Banach lattices, Taiwanese J. Math. 11 (1) (2007), 143 – 150.

B. Aqzzouz, R. Nouira, L. Zraoula, Compactness properties of operators dominated by AM-compact operators, Proc. Amer. Math. Soc. 135 (4) (2007), 1151 – 1157.

B. Aqzzouz, K. Bouras, Dunford-Pettis sets in Banach lattices, Acta Math. Univ. Comenian. (New Ser.) 81 (2) (2012), 185 – 196.

B. Aqzzouz, A. Elbour, Some characterizations of almost Dunford-Pettis operators and applications, Positivity 15 (3) (2011), 369 – 380.

K. Bouras, M. Moussa, Banach lattices with weak Dunford-Pettis property, World Academy of Science, Engineering and Technology, International Science Index 50, 5 (2) (2011), 739 – 743.

K. Bouras, Almost Dunford-Pettis sets in Banach lattices, Rend. Circ. Mat. Palermo (2) 62 (2) (2013), 227 – 236.

J.X. Chen, L. Li, On a question of Bouras concerning weak compactness of almost Dunford-Pettis sets, Bull. Aust. Math. Soc. 92 (1) (2015), 111 – 114.

P.G. Dodds, D.H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (4) (1979), 287 – 320.

G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (5) (1992), 477 – 485.

P. Meyer-Nieberg, “Banach Lattices”, Universitext, Springer-Verlag, Berlin, 1991.

J.A. Sanchez, “Operators on Banach Lattices” (Spanish), Ph. D. Thesis, Complutense University, Madrid, 1985.

H.H. Schaefer, “Banach Lattices and Positive Operators”, Springer-Verlag, New York-Heidelberg, 1974.

Y. Wen, J. Chen, Characterizations of Banach spaces with relatively compact Dunford-Pettis sets, Adv. in Math. (China),

http://advmath.pku.edu.cn/EN/10.11845/sxjz.2014095b

W. Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Semin. Mat. Fis. Univ. Modena 42 (1) (1994), 227 – 236.

A.W. Wickstead, Converses of the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Cambridge Philos. Soc. 120 (1) (1996), 175 – 179.

Downloads

Published

2015-12-01

Issue

Section

Banach Spaces

How to Cite

Banach Lattices with the Positive Dunford-Pettis Relatively Compact Property. (2015). Extracta Mathematicae, 30(2), 161-179. https://doi.org/10.17398/