Real Analytic Version of Lévy’s Theorem

Authors

  • A. El Kinani Université Mohammed V, Ecole Normale Supérieure de Rabat, B.P. 5118, 10105 Rabat (Morocco)
  • L. Bouchikhi Université Mohammed V, Ecole Normale Supérieure de Rabat, B.P. 5118, 10105 Rabat (Morocco)

DOI:

https://doi.org/10.17398/

Keywords:

Fourier series, Lévy’s theorem, weight function, weihgted algebra, commutative Banach algebra, Hermitian Banach algebra, Gelfand space, functional calculus, real analytic function, harmonic function

Abstract

We obtain real analytic version of the classical theorem of Lévy on absolutely convergent power series. Whence, as a consequence, its harmonic version.

Downloads

Download data is not yet available.

References

M. Akkar, A. El Kinani, M. Oudadess, Calculus fonctionnels harmonique et analytique réel, Ann. Sci. Math. Québec 12 (2) (1988), 151 – 169.

S.J. Bhatt, H.V. Dedania, Beurling algebra analogues of the classical theorems of Wiener and Lévy on absolutely convergent Fourier series, Proc. Indian Acad. Sci. Math. Sci. 113 (2) (2003), 179 – 182.

A. El Kinani, A version of Wiener’s and Lévy’s theorems, Rend. Circ. Mat. Palermo (2) 57 (3) (2008), 343 – 352.

A. El Kinani, L. Bouchikhi, A weighted algebra analogues of Wiener’s and Lévy’s theorems, Rend. Circ. Mat. Palermo (2) 61 (3) (2012), 331 – 341.

A. El Kinani, L. Bouchikhi, Wiener’s and Levy’s theorems for some weighted power series, Rend. Circ. Mat. Palermo (to appear).

I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] 9(51) (1941), 3 – 24.

P. Lévy, Sur la convergence absolue des séries de Fourier, Compositio Math. 1 (1935), 1 – 14.

S. Mazur, Sur les anneaux linéaires, C. R. Acad. Sci. Paris 207 (1938), 1025 – 1027.

V. Ptàk, Banach algebras with involution, Manuscripta Math. 6 (1972), 245 – 290.

N. Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1) (1932), 1 – 100.

Downloads

Published

2015-12-01

Issue

Section

Banach Spaces

How to Cite

Real Analytic Version of Lévy’s Theorem. (2015). Extracta Mathematicae, 30(2), 153-159. https://doi.org/10.17398/