Some operators on finite-dimensional non-Archimedean normed spaces

Authors

  • M. Babahmed Department of Mathematics, University of Moulay Ismail, Faculty of Sciences, Meknes, Morocco.

DOI:

https://doi.org/10.17398/2605-5686.39.2.255

Keywords:

Non-Archimedean normed space, t-Orthogonal basis, p-delta function, Simple operator, Similarity, Isometry, Expansion

Abstract

In this paper, we are interested in the study of certain operators in non-Archimedean normed spaces of finite dimension. We introduce the notion of p-delta function, then we characterize the simple operators, the similarities and the expansions. We show if E has an orthogonal basis, then each injective operator on E is the composition of an isometry and an expansion.

Downloads

Download data is not yet available.

References

J. Cabello Sánchez, J. Navarro Garmendia, Isometries of ultrametric normed spaces, Ann. Funct. Anal. 12 (2021), 11 pp., DOI: 10.1007/s43034-021-00144-7.

A. Kubzdela, Isometries, Mazur–Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces, Nonlinear Analysis: Theory, Methods and Applications, 75, pp. 2060-2068 (2012) DOI: 10.1016/j.na.2011.10.006.

A.F. Monna, Analyse Non-archimédienne, Berlin-Springer (1970).

C. Perez-Garcı́a, W.H. Schikkof, Locally Convex Spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics 119, (2010).

A.C.M. van Rooij, Non-Archimedean Functional analysis, New York, Dekker, (1978).

A.C.M. van Rooij, Notes on p-Adic Banach Spaces, Report 7633, Math. Inst. Kathol. Univ. Nijmegen, (1976).

Downloads

Published

2025-01-03

Issue

Section

Non-Archimedean Functional Analysis

How to Cite

Some operators on finite-dimensional non-Archimedean normed spaces. (2025). Extracta Mathematicae, 39(2), 255-271. https://doi.org/10.17398/2605-5686.39.2.255