aff(1|1)-trivial deformations of aff(2|1)-modules of weighted densities on the superspace
Keywords:
Relative cohomology, trivial deformation, Lie superalgebra, symbolAbstract
Over the (1|2)-dimensional real superspace, we study aff(1|1)-trivial deformations of the action of the affine Lie superalgebra aff(2|1) on the direct sum of the superspaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal part.
Downloads
References
M. Abdaoui, H. Khalfoun, I. Laraiedh, Deformation of modules of weighted densities on the superspace R1|N , Acta. Math. Hungar. 145 (2015), 104 – 123.
B. Agrebaoui, F. Ammar, P. Lecomte, V. Ovsienko, Multi-parameter deformations of the module of symbols of differential operators, Int. Math. Res. Not. 16 (2002), 847 – 869.
B. Agrebaoui, N. Ben Fraj, M. Ben Ammar, V. Ovsienko, Deformations of modules of differential forms, J. Nonlinear Math. Phys. 10 (2003), 148 – 156.
F. Ammar, K. Kammoun, Deforming K(1) superalgebra modules of symbols, J. Gen. Lie Theory Appl. 3 (2) (2009), 95 – 111. arXiv:math.ph/0807.4811
I. Basdouri, M. Ben Ammar, Deformation of sl(2) and osp(1|2)-modules of symbols, Acta Math. Hungar. 137 (3) (2012), 214 – 223. arXiv:math.RT/1004.1700
I. Basdouri, I. Laraiedh, O. Ncib, The linear aff(n|1)-invariant differential operators on weighted densities on the superspace R1|n and aff(n|1)-relative cohomology, Int. J. Geom. Methods Mod. Phys. 10 (4) (2013), 1320004, 9 pp.
I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene, K. Kammoun, K1|1 and deformations of the superspace of symbols, J. Nonlinear Math. Phys. 16 (2009), 373 – 409.
I. Basdouri, M. Ben Ammar, B. Dali, S. Omri, Deformation of Vect (R)-modules of symbols, arXiv:math.RT/0702664.
M. Ben Ammar, M. Boujelbene, sl(2)-trivial deformations of VectP (R)-modules of symbols, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 065, 19 pp.
N. Ben Fraj, T. Faidi, H. Khalfoun, A. Zbidi, Cohomology of aff(N |1) acting on the spaces of linear differential operators on the superspace R1|N , submitted to IJGMMP.
N. Ben Fraj, I. Laraiedh, S. Omri, Supertransvectants, cohomology and deformations, J. Math. Phys. 54 (2) (2013), 023501, 19 pp. http://dx.doi.org/10.1063/1.4789539.
A. Fialowski, An example of formal deformations of Lie algebras, in “Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986)”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, Kluwer Acad. Publ., Dordrecht, 1988, 375 – 401.
A. Fialowski, D.B. Fuchs, Construction of miniversal deformations of Lie algebras, J. Funct. Anal. 161 (1999), 76 – 110.
D.B. Fuchs, “Cohomology of Infinite-Dimensional Lie Algebras”, Springer, New York, 1986.
H. Gargoubi, N. Mellouli, V. Ovsienko, Differential operators on supercircle: conformally equivariant quantization and symbol calculus, Lett. Math. Phys. 79 (2007), 51 – 65.
F. Gieres, S. Theisen, Superconformally covariant operators and super-W-algebras, J. Math. Phys. 34 (1993), 5964 – 5985.
P. Grozman, D. Leites, I. Shchepochkina, Lie superalgebras of string theories, Acta Math. Vietnam. 26 (1) (2001), 27 – 63. arXiv:hep-th/9702120
A. Nijenhuis, R. Richardson, Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72, (1966) 1 – 29.
A. Nijenhuis, R.W.Jr. Richardson , Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175 – 179.
V. Ovsienko, C. Roger, Deforming the Lie algebra of vector fields on S 1 1inside the Lie algebra of pseudodifferential symbols on S , in “ Differential Topology, Infinite-Dimensional Lie Algebras, and Applications ”, D.B. Fuchs’ 60th anniversary collection, edited by Alexander Astashkevich and Serge Tabachnikov, American Mathematical Society Translations, Series 2, 194. Adv. Math. Sci., 44. Amer. Math. Soc., Providence, RI, 1999, 211 – 226.
R.W. Richardson, Deformations of subalgebras of Lie algebras, J. Diff. Geom. 3 (1969), 289 – 308.