The μ-topological Hausdorff dimension
Keywords:
Hausdorff dimension, Topological Hausdorff dimensionAbstract
In 2015, R. Balkaa, Z. Buczolich and M. Elekes introduced the topological Hausdorff dimension which is a combination of the definitions of the topological dimension and the Hausdorff dimension. In our manuscript, we propose to generalize the topological Hausdorff dimension by combining the definitions of the topological dimension and the μ-Hausdorff dimension and we call it the μ-topological Hausdorff dimension. We will present upper and lower bounds for the μ-topological Hausdorff dimension of the Sierpiński carpet valid in a general framework. As an application, we give a large class of measures μ, where the μ-topological Hausdorff dimension of the Sierpiński carpet coincides with the lower and upper bounds.
Downloads
References
R. Balka, Z. Buczolich, M. Elekes, A new fractal dimension: The topological Hausdorff dimension, Adv. Math. 274 (2015), 881 – 927.
P. Billingsley, Hausdorff dimension in probability theory, Illinois J. Math. 4 (1960), 187 – 209.
P. Billingsley, “Ergodic Theory and Information”, Wiley series in probability and mathematical statistics, R. E. Krieger Publishing Company, 1978.
R. Engelking, “Dimension Theory”, Mathematical Studies, North-Holland Publishing Company, Amsterdam, 1978.
K.J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (1994), 681 – 702.
K. Falconer, “Fractal Geometry: Mathematical Foundations and Applications” (second edition), John Wiley & Sons, Inc., Hoboken, NJ, 2003.
W. Hurewicz, H. Wallman, “Dimension Theory”, Princeton University Press, Princeton, N.J., 1941.
G.J.O. Jameson, “Topology and Normed Spaces”, Chapman and Hall, London, 1974.
J.-P. Kahane, Sur le modèle de turbulence de Benoı̂t Mandelbrot, C. R. Acad. Sci. Paris Sér. A 278 (1974), 621 – 623.
J.-P. Kahane, Multiplications aléatoires et dimensions de Hausdorff, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 289 – 296.
B.B. Mandelbrot, Possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence, in “Statistical Models and Turbulence (La Jolla, California)”, (edited by M. Rosenblatt and C. Van Atta), Lectures Notes in Physics 12, Springer-Verlag, New York, 1972, 333 – 351.
B.B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier, J. Fluid. Mech. 62 (1974), 331 – 358.
B. Mandelbrot, “Les objets fractals: forme, hasard et dimension”, Nouvelle Bibliothèque Scientifique, Flammarion, Editeur, Paris, 1975.
P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Fractals and Rectifability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.
J. Peyrière, Calculs de dimensions de Hausdorff, Duke Math. J. 44 (1977), 591 – 601.
J. Peyrière, Mesures singulières associées à des découpages aléatoires d’un hypercube, Colloq. Math. 51 (1987), 267 – 276.