Browder essential approximate pseudospectrum and defect pseudospectrum on a Banach space

doi:10.17398/2605-5686.34.1.29

Authors

  • Aymen Ammar Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax. Route de Soukra Km 3.5, B.P. 1171, 3000 Sfax, Tunisia
  • Aref Jeribi Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax. Route de Soukra Km 3.5, B.P. 1171, 3000 Sfax, Tunisia
  • Kamel Mahfoudhi Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax. Route de Soukra Km 3.5, B.P. 1171, 3000 Sfax, Tunisia

Keywords:

Pseudospectrum, Browder essential approximate pseudospectrum, Browder essential defect pseudospectrum

Abstract

In this paper, we introduce and study the Browder essential approximate pseudospectrum and the Browder essential defect pseudospectrum of bounded linear operators on a Banach space. Moreover, we characterize these spectra and will give some results concerning the stability of them under suitable perturbations.

 

Downloads

Download data is not yet available.

References

P. Aiena, “Fredholm and Local Spectral Theory with Applications to Multipliers”, Kluwer Academic Publishers, Dordrecht, 2004.

A. Ammar, A. Jeribi, A characterization of the essential pseudospectra on a Banach space, Arab. J. Math. 2 (2) (2013), 139 – 145.

A. Ammar, A. Jeribi, A characterization of the essential pseudospectra and application to a transport equation, Extracta Math. 28 (1) (2013), 95 – 112.

A. Ammar, A. Jeribi, K. Mahfoudhi, A characterization of the essential approximation pseudospectrum on a Banach space, Filomath 31 (11) (2017), 3599 – 3610.

A. Ammar, A. Jeribi, K. Mahfoudhi, A characterization of the condition pseudospectrum on Banach space, Funct. Anal. Approx. Comput. 10 (2) (2018), 13 – 21.

A. Brunel, D. Revuz, Quelques applications probabilistes de la quasi- compacité, Ann. Inst. H. Poincaré Sect. B (N.S.) 10 (3) (1974), 301 – 337.

E.B. Davies, “Linear Operators and their Spectra”, Cambridge Studies in Advanced Mathematics 106, Cambridge University Press, Cambridge, 2007.

M. Elhodaibi, A. Jaatit, On linear maps approximately preserving the approximate point spectrum or the surjectivity spectrum, Mat. Vesnik 66 (3) (2014), 333 – 342.

F. Fakhfakh, M. Mnif, Perturbation of semi-Browder operators and stability of Browder’s essential defect and approximate point spectrum, J. Math. Anal. Appl. 347 (1) (2008), 235 – 242.

S.R. Caradus, Operators with finite ascent and descent, Pacific J. Math. 18 (3) (1966), 437 – 449.

S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1) (1978), 79 – 80.

M.A. Goldman, S.N. Kračkovskii, Behavior of the space of zero elements with finite-dimensional salient on the Riesz kernel under perturba- tions of the operator, Dokl. Akad. Nauk SSSR 221 (3) (1975), 532 – 534 (in Russian); English translation: Soviet Math. Dokl. 16 (1975), 370 – 373.

A. Jeribi, “Spectral Theory and Applications of Linear Operators and Block Operator Matrices”, Springer-Verlag, New-York, 2015.

A. Jeribi, N. Moalla, A characterization of some subsets of Schechter’s essential spectrum and application to singular transport equation, J. Math. Anal. Appl. 358 (2) (2009), 434 – 444.

M.A. Kaashoek, D.C. Lay, Ascent, descent and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35 – 47.

V. Müller, “Spectral Theory of Linear Operators and Spectral System in Banach Algebras”, Second edition, Operator Theory: Advances and Applications 139, Birkhäuser Verlag, Basel, 2007.

V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (2) (1986), 193 – 198.

V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (2) (1997), 131 – 137.

V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (12) (1995), 3823 – 3825.

M. Schechter, “Principles of Functional Analysis”, Second edition, Graduate Studies in Mathematics 36, American Mathematical Society, Providence, RI, 2002.

A.E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18 – 49.

M.P.H. Wolff, Discrete approximation of unbounded operators and approximation of their spectra, J. Approx. Theory 113 (2) (2001), 229 – 244.

Downloads

Published

2019-06-01

Issue

Section

Operator Theory

How to Cite

Browder essential approximate pseudospectrum and defect pseudospectrum on a Banach space: doi:10.17398/2605-5686.34.1.29. (2019). Extracta Mathematicae, 34(1), 29-40. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.34.1.29