Moving Weyl’s Theorem from f (T ) to T
doi:10.17398/2605-5686.33.2.209
Keywords:
Weyl’s theorem, Browder’s theorem, SVEPAbstract
Schmoeger has shown that if Weyl’s theorem holds for an isoloid Banach space operator T ∈ B(X) with stable index, then it holds for f (T ) whenever f ∈ Holo σ(T ) is a function holomorphic on some neighbourhood of the spectrum of T . In this note we establish a converse.
Downloads
References
P. Aiena, “ Fredholm and Local Spectral Theory, with Applications to Multipliers ”, Kluwer Academic Publishers, Dordrecht, 2004.
B.P. Duggal, Hereditarily polaroid operators, SVEP and Weyl’s theorems, J. Math. Anal. Appl. 340 (2008), 366 – 373.
B.P. Duggal, Polaroid operators satisfying Weyl’s theorem, Linear Algebra Appl. 414 (2006), 271 – 277.
B.P. Duggal, SVEP, Browder and Weyl theorems, in “ Topics in Approximation Theory III ”, Dirección de Fomento Editorial BUAP, Puebla, Mexico, 2009, 107 – 146.
K.B. Laursen, M.M. Neumann, “ An Introduction to Local Spectral Theory ”, The Clarendon Press, Oxford University Press, New York, 2000.
R. Harte, On local spectral theory, in “ Recent Advances in Operator Theory and Applications ”, Birkhäuser, Basel, 2009, 175 – 183.
M. Oudghiri, Weyl’s and Browder’s theorems for operators satisfying the SVEP, Studia Math. 163 (2004), 85 – 101.
C. Schmoeger, On operators T such that Weyl’s theorem holds for f (T ), Extracta Math. 13 (1998), 27 – 33.