Some New Reverses and Refinements of Inequalities for Relative Operator Entropy

doi:10.17398/2605-5686.33.2.167

Authors

  • S.S. Dragomir Mathematics, College of Engineering & Science, Victoria University PO Box 14428, Melbourne City, MC 8001, Australia; School of Computer Science & Applied Mathematics, University of the Witwatersrand Private Bag 3, Johannesburg 2050, South Africa

Keywords:

Inequalities for Logarithm, Relative operator entropy, Operator entropy

Abstract

In this paper we obtain new inequalities for relative operator entropy S(A|B) in the case of operators satisfying the condition mABMA, with 0 < m < M .

Downloads

Download data is not yet available.

References

S.S. Dragomir, Some inequalities for relative operator entropy; preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [http://rgmia.org/papers/v18/v18a145.pdf].

S.S. Dragomir, Reverses and refinements of several inequalities for relative operator entropy; preprint RGMIA Res. Rep. Coll. 19 (2015). [http://rgmia.org/papers/v19/].

S. Furuichi, K. Yanagi, K. Kuriyama, Fundamental properties of Tsallis relative entropy, J. Math. Phys. 45 (2004) 4868 – 4877.

S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Inequal. Appl. 18 (2015), 869 – 877.

S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality, J. Math. Inequal. 5 (2011), Number 4, 595 – 600.

J.I. Fujii, E. Kamei, Uhlmann’s interpolational method for operator means, Math. Japon. 34 (4) (1989), 541 – 547.

J.I. Fujii, E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (3) (1989), 341 – 348.

T. Furuta, J. Mićić Hot, J. Pečarić, Y. Seo, “ Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space ”, Monographs in Inequalities 1, ELEMENT, Zagreb, 2005.

I.H. Kim, Operator extension of strong subadditivity of entropy, J. Math. Phys. 53 (2012), 122204, 3 pp.

P. Kluza, M. Niezgoda, Inequalities for relative operator entropies, Electron. J. Linear Algebra 27 (2014), 851 – 864.

M.S. Moslehian, F. Mirzapour, A. Morassaei, Operator entropy inequalities, Colloq. Math. 130 (2013), 159 – 168.

M. Nakamura, H. Umegaki, A note on the entropy for operator algebras, Proc. Japan Acad. 37 (1961) 149 – 154.

I. Nikoufar, On operator inequalities of some relative operator entropies, Adv. Math. 259 (2014), 376 – 383.

W. Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960), 91 – 98.

A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. Phys. 54 (1) (1977), 21 – 32.

Downloads

Published

2018-12-01

Issue

Section

Operator Theory

How to Cite

Some New Reverses and Refinements of Inequalities for Relative Operator Entropy: doi:10.17398/2605-5686.33.2.167. (2018). Extracta Mathematicae, 33(2), 167-189. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.33.2.167