A Note on a Paper of S.G. Kim

doi:10.17398/2605-5686.33.2.145

Authors

  • Diana M. Serrano-Rodríguez Departamento de Matemáticas, Universidad Nacional de Colombia 111321 - Bogotá, Colombia

Keywords:

Bohnenblust-Hille inequality

Abstract

We answer a question posed by S.G. Kim in [3] and show that some of the results of his paper are immediate consequences of known results.

Downloads

Download data is not yet available.

References

H.F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600 – 622.

J.R. Campos, P. Jiménez-Rodrı́guez, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, On the real polynomial Bohnenblust-Hille inequality, Linear Algebra Appl. 465 (2015), 391 – 400.

S.G. Kim, The geometry of L 3 l2 ∞ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math. 33 (1) (2018), 51 – 66.

D. Pellegrino, E. Teixeira, Towards sharp Bohnenblust-Hille constants, Commun. Contemp. Math. 20 (2018), 1750029, 33 pp.

Downloads

Published

2018-12-01

Issue

Section

Banach Spaces

How to Cite

A Note on a Paper of S.G. Kim: doi:10.17398/2605-5686.33.2.145. (2018). Extracta Mathematicae, 33(2), 145-147. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.33.2.145