Partial Differential Equations and Strictly Plurisubharmonic Functions in Several Variables

doi:10.17398/2605-5686.33.1.67

Authors

  • Jamel Abidi Department of Mathematics, Faculty of Sciences of Tunis 1060 Tunis, Tunisia

Keywords:

Analytic convex and plurisubharmonic functions, harmonic function, maximal plurisubharmonic, differential equation, analysis, inequalities

Abstract

Using algebraic methods, we prove that there exists a fundamental relation between partial differential equations and strictly plurisubharmonic functions over domains of Cn (n ≥ 1).

Downloads

Download data is not yet available.

References

J. Abidi, Sur quelques problèmes concernant les fonctions holomorphes et plurisousharmoniques, Rend. Circ. Mat. Palermo (2) 51 (2002), 411 – 424.

J. Abidi, Contribution à l’étude des fonctions plurisousharmoniques convexes et analytiques, Serdica Math. J. 40 (2014), 329 – 388.

H. Behnke, E. Peschl, Zur Theorie der Funktionen mehrerer komplexer Veränderlichen, Math. Ann. 111 (1935), 158 – 177.

H.J. Bremermann, Complex Convexity, Trans. Amer. Math. Soc. 82 (1956), 17 – 51.

H.J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries, Trans. Amer. Math. Soc. 91 (1959), 246 – 276.

U. Cegrell, Removable singularities for plurisubharmonic functions and related problems, Proc. London Math. Soc. (3) 36 (1978), 310 – 336.

D. Coman, V. Guedj, A. Zeriahi, Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math. 676 (2013), 33 – 49.

H. El Mir, Fonctions plurisousharmoniques et ensembles polaires, in “ Séminaire Pierre Lelong - Henri Skoda (Analyse). Années 1978/79 ”, Lecture Notes in Math. 822, Springer, Berlin, 1980, 61 – 76.

H. El Mir, Sur le prolongement des courants positifs fermés, Acta Math. 153 (1984), 1 – 45.

G.M. Henkin, J. Leiterer, “ Theory of Functions on Complex Manifolds ”, Birkhäuser, Boston, Mass., 1984.

L. Hormander, “ Notions of Convexity ”, Birkhauser, Basel-Boston-Berlin, 1994.

M. Klimek, “ Pluripotential Theory ”, Clarendon Press, Oxford, 1991.

S.G. Krantz, “ Function Theory of Several Complex Variables ”, John Wiley & Sons, Inc., New York, 1982.

P. Lelong, Sur quelques problèmes de la théorie des fonctions de deux variables complexes, Ann. Sci. École Norm. Sup. (3) 58 (1941), 83 – 177.

P. Lelong, Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942), 398 – 400.

P. Lelong, Sur les suites des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942), 454 – 456.

P. Lelong, Les fonctions plurisousharmoniques, Ann. Sci. École Norm. Sup. (3) 62 (1945), 301 – 338.

P. Lelong, Ensembles singuliers impropres des fonctions plurisousharmoniques, J. Math. Pures Appl. (9) 36 (1957), 263 – 303.

K. Oka, Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes, Tôhoku Math. J. 49 (1942), 15 – 52.

A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61 – 119.

J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322 – 357.

J. Wiklund, On subextension of pluriharmonic and plurisubharmonic functions, Ark. Mat. 44 (2006), 182 – 190.

A. Zeriahi, Pluricomplex Green functions and the Dirichlet problem for the complex Monge-Ampère operator, Michigan Math. J. 44 (1997), 579 – 596.

Downloads

Published

2018-06-01

Issue

Section

Real and Complex Analysis

How to Cite

Partial Differential Equations and Strictly Plurisubharmonic Functions in Several Variables: doi:10.17398/2605-5686.33.1.67. (2018). Extracta Mathematicae, 33(1), 67-108. https://revista-em.unex.es/index.php/EM/article/view/2605-5686.33.1.67