Conformal Mappings of Mixed Generalized Quasi-Einstein Manifolds Admitting Special Vector Fields
Keywords:
mixed generalized quasi-Einstein Manifolds, φ(Ric)-vector field, concircular vector field, Codazzi tensor, conformal mapping, conharmonic mapping, σ(Ric)-vector field, ν(Ric)-vector fieldAbstract
It is known that Einstein manifolds form a natural subclass of the class of quasi-Einstein manifolds and plays an important role in geometry as well as in general theory of relativity. In this work, we investigate conformal mapping of mixed generalized quasi-Einstein manifolds, considering a conformal mapping between two mixed generalized quasi-Einstein manifolds Vn and V̄n. We also find some properties of this transformation from Vn to V̄n and some theorems are proved. Considering this mapping, we peruse some properties of these manifolds. Later, we also study some special vector fields under these mapping on this manifolds and some theorems about them are proved.
Downloads
References
K. Arslan, R. Ezentas, C. Murathan, C. Özgür, On pseudo Ricci-symmetric manifolds, Balkan J. Geom. Appl. 6 (2) (2001), 1 – 5.
A. Bhattacharya, T. De, D. Debnath, Mixed generalized quasi-Einstein manifold and some properties, Analele Stiintifice Ale Universitatii “ AL.I.CUZA ” Din Iasi (S.N) Mathematica Tomul LIII, f.1., (2007).
H.W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1) (1925), 119 – 145.
U. Bruzzo, Geometric invariants and quantum field theory, J. Geom. Phys. 61 (2011), 1157 – 1248.
M.C. Chaki, R.K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297 – 306.
O. Chepurna, V. Kiosak, J. Mikeš, Conformal mappings of Riemannian spaces which preserve the Einstein tensor, Aplimat - J. Appl. Math. 3 (1) (2010), 253 – 258.
U.C. De, G.C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J. 44 (2004), 607 – 615.
L.P. Eisenhart “ Riemannian Geometry ”, Princeton Univ. Press, Princeton, N.J., 1926.
A.R. Gover, P. Nurowski, Obstructions to conformally Einstein metrics in n dimentions, J. Geom. Phys. 56 (2006), 450 – 484.
I. Hinterleitner, V.A. Kiosak, φ(Ric)-vector fields in Riemannian spaces, Arch. Math. (Brno) 44 (5) (2008), 385 – 390.
Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73 – 80.
B. Kirik, F.O. Zengin, Conformal mappings of quasi-Einstein manifolds admitting special vector fields, Filomat 29 (3) (2015), 525 – 534.
W. Kühnel, H.B. Rademacher, Conformal transformations of pseudo-Riemannian manifolds, in “ Recent Developments in Pseudo-Riemannian Geometry ”, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 261 – 298.
J. Mikeš, M.L. Gavrilchenko, E.I. Gladysheva, Conformal mappings onto Einstein spaces, Moscow Univ. Math. Bull. 49 (3) (1994), 10 .– 14.
N.S. Sinyukov, “ Geodesic Mappings of Riemannian Spaces ”, Nauka, Moscow, 1979.
K. Yano, Concircular geometry, I-IV, Proc. Imp. Acad. Tokyo 16 (1940), 195 – 200, 354 – 360, 442 – 448, 505 – 511.