More Indecomposable Polyhedra

Authors

  • Krzysztof Przeslawski Wydzial Matematyki, Informatyki i Ekonometrii, Uniwersytet Zielonogórski, ul. prof. Z. Szafrana 4a, 65 − 516 Zielona Góra, Poland
  • David Yost Centre for Informatics and Applied Optimization, Faculty of Science and Technology, Federation University, PO Box 663, Ballarat, Vic. 3353, Australia

Keywords:

Polytope, decomposable

Abstract

We apply combinatorial methods to a geometric problem: the classification of polytopes, in terms of Minkowski decomposability. Various properties of skeletons of polytopes are exhibited, each sufficient to guarantee indecomposability of a significant class of polytopes. We illustrate further the power of these techniques, compared with the traditional method of examining triangular faces, with several applications. In any dimension d≠2, we show that of all the polytopes with d2 + d/2 or fewer edges, only one is decomposable. In 3 dimensions, we complete the classification, in terms of decomposability, of the 260 combinatorial types of polyhedra with 15 or fewer edges.

Downloads

Download data is not yet available.

References

D. W. Barnette, The minimum number of vertices of a simple polytope, Israel J. Math. 10 (1971), 121 – 125.

R. Blind, P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (2-3) (1987), 287 – 297.

D. Briggs, D. Yost, Polyhedra with 16 edges, In preparation.

D. Britton, J. D. Dunitz, A complete catalogue of polyhedra with eight or fewer vertices, Acta Cryst. Ser. A 29 (4) (1973), 362 – 371.

A. Brøndsted, “An Introduction to Convex Polytopes”, Graduate Texts in Mathematics, 90, Springer-Verlag, New York-Berlin, 1983.

E. J. Friedman, Finding a simple polytope from its graph in polynomial time, Discrete Comput Geom. 41 (2) (2009), 249 – 256.

B. Grünbaum, “Convex Polytopes”, Second edition, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003.

M. Kallay, “Decomposability of Convex Polytopes”, Ph.D. Dissertation, The Hebrew University of Jerusalem, 1979.

M. Kallay, Indecomposable Polytopes, Israel J. Math. 41 (3) (1982), 235 – 243.

T. P. Kirkman, Applications of the theory of the polyedra to the enumeration and registration of results, Proc. Roy. Soc. London 12 (1863), 341 – 380.

P. McMullen, Indecomposable convex polytopes, Israel J. Math. 58 (3) (1987), 321 – 323.

W. J. Meyer, Indecomposable polytopes, Trans. Amer. Math. Soc. 190 (1974), 77 – 86.

N. Prabhu, Hamiltonian simple polytopes, Discrete Comput. Geom. 14 (3) (1995), 301 – 304.

K. Przeslawski, D. Yost, Decomposability of polytopes, Discrete Comput. Geom. 39 (1-3) (2008), 460 – 468.

G. C. Shephard, Decomposable convex polyhedra, Mathematika 10 (1963), 89 – 95.

Z. Smilansky, “Decomposability of Polytopes and Polyhedra”, Ph.D. Dissertation, Hebrew University of Jerusalem, 1986.

Z. Smilansky, Decomposability of polytopes and polyhedra, Geom. Dedicata, 24 (1) (1987), 29 – 49.

Downloads

Published

2016-12-01

Issue

Section

Convex Geometry