⊗-Pure model structure on the category of N -complexes
DOI:
https://doi.org/10.17398/2605-5686.39.1.119Keywords:
N -complexes, complete cotorsion pairs, model structure, pure derived category, pure exact structureAbstract
Let G be a closed symmetric monoidal concrete Grothendieck category. In this paper, we introduce a model structure on (CN (G), P⊗dw ) the exact category of N -complexes with the degree-wise ⊗-pure exact structure. Our result is based on the Gillespie’s Theorem by introducing two compatible cotorsion pairs on this category.
Downloads
References
J. Adámek, J. Rosický, “Locally Presentable and Accessible Categories”, London Math. Soc. Lecture Note Ser., 189, Cambridge University Press, Cambridge, 1994.
L. Alonso Tarrı́o, A. Jeremı́as López, M. Pérez Rodrı́guez, M. Vale Gonsalves, The derived category of quasi-coherent sheaves and axiomatic stable homotopy, Adv. Math. 218 (2008), 1224 – 1252.
P. Bahiraei, Cotorsion pairs and adjoint functors in the homotopy category of N -complexes, J. Algebra Appl. 19 (2020), 2050236, 19 pp.
P. Bahiraei, Model structures on the category of complexes of quiver representations, Bull. Iranian Math. Soc. 47 (2021), S103 – S117.
P. Bahiraei, R. Hafezi, A. Nematbakhsh, Homotopy category of N -complexes of projective modules, J. Pure Appl. Algebra 220 (2016), 2414 – 2433.
T. Buhler, Exact categories, Expo. Math. 28 (1) (2010), 1 – 69.
C. Cibils, A. Solotar, R. Wisbauer, N -complexes as functors, amplitude cohomology and fusion rules, Comm. Math. Phys. 272 (2007), 837 – 849.
M. Dubois-Violette, dN = 0: generalized homology, K-Theory 14 (1998), 371 – 404.
E. Enochs, S. Estrada, I. Iacob, Cotorsion pairs, model structures and homotopy categories, Houston J. Math. 40 (1) (2014), 43 – 61.
S. Estrada, Monomial algebras over infinite quivers. Applications to N-complexes of modules, Comm. Algebra 35 (2007), 3214 – 3225.
S. Estrada, J. Gillespie, S. Odabasi, Pure exact structures and the pure derived category of a scheme, Math. Proc. Cambridge Philos. Soc. 163 (2) (2017), 251 – 264.
J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (8) (2004), 3369 – 3390.
J. Gillespie, The flat model structure on complexes of sheaves, Trans. Amer. Math. Soc. 358 (7) (2006), 2855 – 2874.
J. Gillespie, Cotorsion pairs and degreewise homological model structures, Homology Homotopy Appl. 10 (1) (2008), 283 – 304.
J. Gillespie, M. Hovey, Gorenstein model structures and generalized derived categories, Proc. Edinb. Math. Soc. (2) 53 (2010), 675 – 696.
J. Gillespie, Model structures on exact categories, J. Pure Appl. Algebra 215 (2011), 2892 – 2902.
J. Gillespie, The homotopy category of N -complexes is a homotopy category, J. Homotopy Relat. Struct. 10 (2015), 93 – 106.
A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119 – 221.
R. Hartshorne, “Algebraic Geometry”, Grad. Texts in Math., No. 52, Springer-Verlag, New York-Heidelberg, 1977.
M. Henneaux, N -complexes and higher spin gauge fields, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1255 – 1263.
M. Hovey, Cotorsion pair, model category structures, and representation theory, Math. Z. 241 (2002), 553 – 592.
O. Iyama, K. Kato, J. Miyachi, Derived categories of N -complexes, J. Lond. Math. Soc. (2) 96 (3) (2017), 687 – 716.
M.M. Kapranov, On the q-analog of homological algebra, 1996, arXiv:q-alg/9611005.
B. Lu, Cartan-Eilenberg Gorenstein projective N -complexes, Comm. Algebra 49 (9) (2021), 3810 – 3824.
B. Lu, Zh. Di Gorenstein cohomology of N -complexess, J. Algebra Appl. 19 (2020), 2050174, 14 pp.
W. Mayer, A new homology theory, Ann. of Math. (2) 43 (1942), 370 – 380.
D. Quillen, “Homotopical Algebra”, Lecture Notes in Math., No. 43, Springer-Verlag, Berlin-New York, 1967.
L. Salce, Cotorsion theories for abelian groups, in “Symposia Mathematica, Vol. XXIII” (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), Academic Press, London-New York, 1979, 11 – 32.
J. Štovı́ček, Exact model categories, approximation theory, and cohomology of quasi-coherent sheaves, in “Advances in Representation Theory of Algebras”, EMS Ser. Congr. Rep., Zurich, 2013, 297 – 367.
The Stacks project authors, The Stacks project, 2017, https://stacks.math.columbia.edu.
A. Tikaradze, Homological constructions on N -complexes, J. Pure Appl. Algebra 176 (2002), 213 – 222.
G. Yang, R.-J. Du, On cotorsion pairs of chain complexes, Comm. Algebra 43 (2015), 959 – 970.
X. Yang, T. Cao, Cotorsion pairs in CN (A), Algebra Colloq. 24 (2017), 577 – 602.
X. Yang, N. Ding, The homotopy category and derived category of N-complexes, J. Algebra 426 (2015), 430 – 476.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.