Tensorial and Hadamard product inequalities for functions of selfadjoint operators in Hilbert spaces in terms of Kantorovich ratio

Authors

  • S.S. Dragomir Mathematics, College of Engineering & Science Victoria University, PO Box 14428, Melbourne City 8001, Australia

DOI:

https://doi.org/10.17398/2605-5686.38.2.237

Keywords:

Tensorial product, Hadamard Product, Selfadjoint operators, Convex functions

Abstract

Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous on the interval I with

 

0 <γ ≤ f(t)/g(t)≤ Γ for t ∈ I

 

and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then

 

 

[f1−ν(A) gν (A)] ⊗ [fν(B) g1−ν (B)] ≤ (1 − ν) f (A) ⊗ g (B) + ν g (A) ⊗ f (B)

                ≤ [(γ + Γ) 2/4γΓ]R [f1−ν(A) gν (A)] ⊗ [fν(B) g1−ν (B)].

 

The above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “ ⊗ ”.

Downloads

Download data is not yet available.

References

T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203 – 241.

H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (7) (2000), 2075 – 2084.

J.S. Aujila, H.L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265 – 272.

S.S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417 – 478.

S.S. Dragomir, A. McAndrew, A note on numerical comparison of some multiplicative bounds related to weighted arithmetic and geometric means, Transylv. J. Math. Mechan. 11 (1-2) (2019), 91 – 99.

J. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Japon. 41 (1995), 531 – 535.

S. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46 – 49.

F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), 262 – 269.

F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra 59 (2011), 1031 – 1037.

K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Sci. Math. 1 (2) (1998), 237 – 241.

A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc. 101 (1961), 520 – 554.

W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2) (2015), 467 – 479.

J. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, “ Mond-Pečarić Method in Operator Inequalities ”, Monogr. Inequal. 1, ELEMENT, Zagreb, 2005.

W. Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960), 91 – 98.

M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Jpn. 55 (2002), 583 – 588.

S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Linear Algebra Appl. 420 (2007), 433 – 440.

G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551 – 556.

Downloads

Published

2023-12-01

Issue

Section

Operator Theory

How to Cite

Tensorial and Hadamard product inequalities for functions of selfadjoint operators in Hilbert spaces in terms of Kantorovich ratio. (2023). Extracta Mathematicae, 38(2), 237-250. https://doi.org/10.17398/2605-5686.38.2.237