A note on isomorphisms of quantum systems
DOI:
https://doi.org/10.17398/2605-5686.38.1.17Keywords:
quantum system, observables, GB*-algebra, Jordan homomorphismAbstract
We consider the question as to whether a quantum system is uniquely determined by all values of all its observables. For this, we consider linearly nuclear GB*-algebras over W*-algebras as models of quantum systems.
Downloads
References
G.R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) 15 (1965), 399 – 421.
G.R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17 (1967), 91 – 114.
B. Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. London Math. Soc. (2) 62 (2000), 917 – 924.
M. Bresar, P. Semrl, Spectral characterization of idempotents and invertibility preserving linear maps, Exposition. Math. 17 (1999), 185 – 192.
O. Bratteli, D.W. Robinson, “ Operator Algebras and Quantum Statistical Mechanics ”, Vol. 1, Texts and Monographs in Physics, Springer-Verlag, New York-Heidelberg, 1979.
P.G. Dixon, Generalized B*-algebras, Proc. London Math. Soc. (3) 21 (1970), 693 – 715.
P.G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. 23 (1971), 53 – 69.
Z. Ennadifi, “ An Introduction to the Mathematical Formalism of Quantum Mechanics ”, Master of Science Thesis, Mohammed V University, Rabat, Morocco, 2018.
M. Fragoulopoulou, “ Topological Algebras with Involution ”, North-Holland Mathematics Studies 200, Elsevier Science B.V., Amsterdam, 2005.
M. Fragoulopoulou, A. Inoue, M. Weigt, I. Zarakas, “ Generalized B*-algebras and Applications ”, Lecture Notes in Mathematics, 2298, Springer, Cham, 2022.
R.V. Kadison, J.R. Ringrose, “ Fundamentals of the Theory of Operator Algebras ”, Academic Press, 1996.
M. Weigt, On nuclear generalized B*-algebras, in “ Proceedings of the International Conference on Topological Algebras and Their Applications–ICTAA 2018 ” (edited by Mart Abel), Math. Stud. (Tartu), 7, Est. Math. Soc., Tartu, 2018, 137 – 164.
M. Weigt, Applications of generalized B*-algebras to quantum mechanics, in “ Positivity and its Applications ”, Trends Math., Bikhauser/Springer, Cham, 2021, 283 – 318.