Structure and bimodules of simple Hom-alternative algebras

Authors

  • S. Attan Département de Mathématiques, Université d’Abomey-Calavi 01 BP 4521, Cotonou 01, Bénin

DOI:

https://doi.org/10.17398/2605-5686.36.1.1

Keywords:

Bimodules, solvable, simple, Hom-alternative algebras

Abstract

This paper is mainly devoted to a structure study of Hom-alternative algebras. Equivalent conditions for Hom-alternative algebras being solvable, simple and semi-simple are provided. Moreover some results about Hom-alternative bimodule are found.

Downloads

Download data is not yet available.

References

B. Agrebaoui, K. Benali, A. Makhlouf, Representations of simple Hom-Lie algebras, J. Lie Theory 29 (4) (2019), 1119 – 1135.

S. Attan, H. Hounnon, B. Kpamegan, Hom-Jordan and Hom-alternative bimodules, Extracta Math. 35 (1) (2020), 69 – 97.

S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014) 38 – 60.

X. Chen, W. Han, Classification of multiplicative simple Hom-Lie algebras, J. Lie Theory 26 (3) (2016) 767 – 775.

M. Elhamdadi, A. Makhlouf, Deformations of Hom-alternative and Hom-Malcev algebras, Algebras Groups Geom. 28 (2) (2011), 117 – 145.

J.T. Hartwig, D. Larsson, S.D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2) (2006), 314 – 361.

N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509 – 530.

N. Jacobson, Structure of alternative and Jordan bimodules, Osaka Math. J. 6 (1954), 1 – 71.

D. Larsson, S.D. Silvestrov, Quasi-Hom-Lie algebras, Central Extensions and 2-cocycle-like identities, J. Algebra 288 (2) (2005), 321 – 344.

D. Larsson, S.D. Silvestrov, Quasi-Lie algebras, in “Noncommutative geometry and representation theory in mathematical physics”, Contemp. Math. 391, Amer. Math. Soc., Providence, RI, 2005, 241 – 248.

D. Larsson, S.D. Silvestrov, Quasi-deformations of sl2(F) using twisted derivations, Comm. Algebra 35 (12) (2007), 4303 – 4318.

X.X. Li, Structures of multiplicative Hom-Lie algebras, Adv. Math. (China) 43 (6) (2014), 817 – 823.

A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra 8 (2010), 177 – 190.

A. Makhlouf, S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2) (2008), 51 – 64.

R.D. Schafer, Alternative algebras over an arbitrary field, Bull. Amer. Math. Soc. 49 (1943), 549 – 555.

R.D. Schafer, Representations of alternative algebras, Trans. Amer. Math. Soc. 72 (1952), 1 – 17.

Y. Sheng, Representation of hom-Lie algebras, Algebr. Represent. Theory 15 (6) (2012), 1081 – 1098.

C. Yao, Y. Ma, L. Chen, Structures, classifications and bimodules of multiplicative simple Hom-Jordan algebras, arxiv:1906.04561v1.

D. Yau, Hom-algebras as deformations and homology, arxiv:0712.3515v1.

D. Yau, Hom-Maltsev, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra 11 (2012), 177 – 217.

A. Zahari, A. Makhlouf Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math. 24 (1) (2020), 79 – 102.

M. Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8 (1) (1931), 123 – 147.

M. Zorn, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. Hamburg 9 (1) (1933), 395 – 402.

Downloads

Published

2021-06-20

Issue

Section

Algebra

How to Cite

Structure and bimodules of simple Hom-alternative algebras. (2021). Extracta Mathematicae, 36(1), 1-24. https://doi.org/10.17398/2605-5686.36.1.1