Four-dimensional quasi-Einstein non-reductive homogeneous spaces are Einstein
DOI:
https://doi.org/10.17398/Keywords:
non-reductive, homogeneous space, quasi-EinsteinAbstract
We investigate quasi-Einstein structures on four-dimensional non-reductive homogeneous spaces. We show that contrary to the Ricci solitons structures, quasi-Einstein structures display a strong rigidity in the sense that every such a structure is necessarily Einstein.
Downloads
References
S. Azami, G. Fasihi-Ramandi, V. Pirhadi, Generalized Ricci solitons on non-reductive four-dimensional homogeneous spaces, J. Nonlinear Math. Phys. 30 (3) (2023), 1069 – 1093.
G. Calvaruso, A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces, Canad. J. Math. 64 (4) (2012), 778 – 804.
G. Calvaruso, A. Fino, A. Zaeim, Homogeneous geodesics of non-reductive homogeneous pseudo-riemannian 4-manifolds, Bull. Braz. Math. Soc. (N.S.) 46 (2015), 23 – 64.
G. Calvaruso, A. Zaeim, A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys. 80 (2014), 15 – 25.
G. Calvaruso, A. Zaeim, Geometric structures over non-reductive homogeneous 4-spaces, Adv. Geom. 14 (2) (2014), 191 – 214.
J.S. Case, Singularity theorems and the Lorentzian splitting theorem for the Bakry-Emery-Ricci tensor, J. Geom. Phys. 60 (3) (2010), 477 – 490.
J.S. Case, Y.-J. Shu, G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (1) (2011), 93 – 100.
M.E. Fels, A.G. Renner, Non-reductive homogeneous pseudo-riemannian manifolds of dimension four, Canad. J. Math. 58 (2) (2006), 282 – 311.
G.J. Galloway, E. Woolgar, Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys. 86 (2014), 359 – 369.
C. He, P. Petersen, W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2) (2012), 271 – 311.
D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with non-positive scalar curvature, Proc. Amer. Math. Soc. 131 (8) (2003), 2573 – 2576.
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, 2002.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









