Spectrally distinguishing symmetric spaces II

Authors

  • Emilio A. Lauret Instituto de Matemática (INMABB), Departamento de Matemática Universidad Nacional del Sur (UNS)-CONICET, Bahı́a Blanca, Argentina
  • Juan S. Rodrı́guez Departamento de Matemáticas, Pontificia Universidad Javeriana, Bogotá, Colombia

DOI:

https://doi.org/10.17398/

Keywords:

Isospectrality, first eigenvalue, homogeneous metric, symmetric space, nu-stability

Abstract

The action of the subgroup G2 of SO(7) (resp. Spin(7) of SO(8)) on the Grassmannian space M = SO(7)/(SO(5)×SO(2)) (resp. M = SO(8)/(SO(5)×SO(3)) ) is still transitive. We prove that the spectrum (i.e. the collection of eigenvalues of its Laplace-Beltrami operator) of a symmetric metric g0 on M coincides with the spectrum of a G2-invariant (resp. Spin(7)-invariant) metric g on M only if g0 and g are isometric. As a consequence, each non-flat compact irreducible symmetric space of non-group type is spectrally unique among the family of all currently known homogeneous metrics on its underlying differentiable manifold.

Downloads

Download data is not yet available.

References

A. Arvanitoyeorgos, New invariant Einstein metrics on generalized flag manifolds, Trans. Amer. Math. Soc. 337 (2) (1993), 981 – 995. DOI: 10.2307/2154253.

A.L. Besse, “Einstein manifolds”, Classics Math., Springer-Verlag, Berlin, 2008.

R. Bettiol, E.A. Lauret, P. Piccione, The first eigenvalue of a homogeneous CROSS, J. Geom. Anal. 32 (2022), Paper No. 76, 63 pp. DOI: 10.1007/s12220-021-00826-7.

H.-D. Cao, C. He, Linear stability of Perelman’s ν-entropy on symmetric spaces of compact type, J. Reine Angew. Math. 709 (2015), 229 – 246. DOI: 10.1515/crelle-2013-0096.

J.E. D’Atri, W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215. DOI: 10.1090/memo/0215.

C.S. Gordon, D. Schueth, C.J. Sutton, Spectral isolation of biinvariant metrics on compact Lie groups, Ann. Inst. Fourier (Grenoble) 60 (5) (2010), 1617 – 1628. DOI: 10.5802/aif.2567.

M.M. Kerr, Some new homogeneous Einstein metrics on symmetric spaces, Trans. Amer. Math. Soc. 348 (1) (1996), 153 – 171. DOI: 10.1090/S0002-9947-96-01512-7.

M. Kimura, Homogeneous Einstein metrics on certain Kähler C-spaces, in “Recent topics in differential and analytic geometry”, Adv. Stud. Pure Math., 18, Academic Press, Inc., Boston, MA, 1990, 303 – 320. DOI: 10.2969/aspm/01810303.

A.W. Knapp, “Lie groups beyond an introduction”, Progr. Math., 140, Birkhäuser Boston, Inc., Boston, MA, 2002.

K. Kröncke, Stability and instability of Ricci solitons, Calc. Var. Partial Differential Equations 53 (1-2) (2015), 265 – 287. DOI: 10.1007/s00526-014-0748-3.

E.A. Lauret, The smallest Laplace eigenvalue of homogeneous 3-spheres, Bull. Lond. Math. Soc. 51 (1) (2019), 49 – 69. DOI: 10.1112/blms.12213.

E.A. Lauret, Spectral uniqueness of bi-invariant metrics on symplectic groups, Transform. Groups 24 (4) (2019), 1157 – 1164. DOI: 10.1007/s00031-018-9486-5.

E.A. Lauret, J.S. Rodrı́guez, Spectrally distinguishing symmetric spaces I, Math. Z. 350 (2025), article no. 42. DOI: 10.1007/s00209-025-03739-1.

T. Levasseur, S.P. Smith, Primitive ideals and nilpotent orbits in type G2 , J. Algebra 114 (1988), 81 – 105. DOI: 10.1016/0021-8693(88)90214-1.

S. Lin, B. Schmidt, C.J. Sutton, Geometric structures and the Laplace spectrum, Part II, Trans. Amer. Math. Soc. 374 (12) (2021), 8483 – 8530. DOI: 10.1090/tran/8417.

K. Mashimo, On branching theorem of the pair (G2 , SU(3)), Nihonkai Math. J. 8 (2) (1997), 101 – 107.

A.L. Onishchik, Inclusion relations among transitive compact transformation groups, Amer. Math. Soc. Transl. Ser. 2 50 (1966), 5 – 58. DOI: 10.1090/trans2/050/02.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.7). https://www.sagemath.org, 2022. DOI: 10.5281/zenodo.593563.

B. Schmidt, C. Sutton, Detecting the moments of inertia of a molecule via its rotational spectrum, II. Preprint available at Schmidt’s web page. (2014).

H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math. 59 (1) (1986), 57 – 71.

Downloads

Published

2025-05-31

Issue

Section

Articles in press

How to Cite

Spectrally distinguishing symmetric spaces II. (2025). Extracta Mathematicae. https://doi.org/10.17398/