Isocanted cube: the lower Lebesgue volumes, incidence numbers and symmetries of this d–dimensional tile
DOI:
https://doi.org/10.17398/Keywords:
tile space, symmetry group, face volume, cubical zonotope, isocanted cube, incidence number, perturbationAbstract
Let d ≥ 2. In this paper we prove that Id(ℓ, a) fills Rd face–to–face by translations. We prove that the symmetry group of Id(ℓ, a) contains the product of cyclic groups Cd × C2 as a subgroup. We compute the Lebesgue j–volume (i.e., the sum of the Lebesgue j–measures of the j–faces) of Id(ℓ, a), for 1 ≤ j < d. We compute the incidence numbers (as defined by Grünbaum) of the faces of Id(ℓ, a).
Downloads
References
R.M. Adin, A new cubical h-vector, in “Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics” (New Brunswick, NJ, 1994; edited by R. Simion), Discrete Math. 157 (1-3) (1996), 3 – 14. doi.org/10.1016/S0012-365X(96)83003-2
M. Alexander, M. Fradelizi, L.C. Garcı́a-Lirola, A. Zvavitch, Geometry and volume product of finite dimensional Lipschitz–free spaces, J. Funct. Anal. 280 (2021), paper n. 108849, 38 pp. doi.org/10.1016/j.jfa.2020.108849
A.D. Alexandrov, “Convex polyhedra”, Springer-Verlag, Berlin, 2005.
M. Beck, S. Robins, “Computing the continuous discretely. Integer–point enumeration in Polyhedra”, Springer, New York, 2007.
L.J. Billera, A. Björner, Face numbers of polytopes and complexes, Chapter 17 in [19] in this list.
T. Bisztriczky, P. McMullen, R. Schneider, I. Weiss (eds.), “Polytopes: abstract, convex and computational”, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 440, Kluwer Academic Publishers Group, Dordrecht, 1994.
G. Blind, R. Blind, The cubical d-polytopes with fewer than 2d+1 vertices, Discrete Comput. Geom. 13 (3-4) (1995), 321 – 345. doi.org/10.1007/BF02574048.
G. Blind, R. Blind, The almost simple cubical polytopes, Discrete Math. 184 (1998), 25 – 48. doi.org/10.1016/s0012-365x(97)00159-3
V. Boltyanski, H. Martini, P.S. Soltan, “Excursions into combinatorial geometry”, Springer-Verlag, Berlin, 1997.
R.C. Bose, A note on Fisher’s inequality for balanced incomplete block designs, Ann. Math. Statistics 20 (1949), 619 – 620. doi.org/10.1214/aoms/1177729958.
R.C. Bose, D.M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced dessigns, Ann. Math. Statist. 30 (1959), 21 – 38. www.jstor.org/stable/2237117.
N. Carlini, D. Paleka, K. (Dj) Dvijotham, T. Steinke, J. Hayase, A. Feder Cooper, K. Lee, M. Jagielski, M. Nasr, A. Conmy, I. Yona, E. Wallace, D. Rolnick, F. Tramèr, Stealing part of a production language model, arXiv:2403.06634v2 (9 Jul 2024).
H.M.S. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137 – 156.
P.R. Cromwell, “Polyhedra”, Cambridge Univ. Press, Cambridge, 1997.
A.M. Dall, “Matroids: h-vectors, zonotopes and Lawrence polytopes”, Thesis, U. Politècnica de Catalunya, 2015.
M. Deza, V. Grishukhin, Voronoi’s conjecture and space tiling zonotopes, Mathematika 51 (2004), 1 – 10.
R.M. Erdahl, Zonotopes, dicings, and Voronoi’s conjecture on parallelohedra, European J. Combin. 20 (1999), 527 – 549.
R.J. Gardner, “Geometric tomography”, Encyclopedia Math. Appl., 58, Cambridge University Press, Cambridge, 1995.
J.E. Goodman, J. O’Rourke, C.D. Tóth (eds.), “Handbook of discrete and computational geometry”, Third edition, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2018.
E. Gover, N. Krikorian, Determinants and the volumes of parallelotopes and zonotopes, Linear Algebra Appl. 433 (2010), 28 – 40. doi.org/10.1016/j.laa.2010.01.031.
P. Gritzmann, V. Klee, Computational convexity, Chapter 36 in [19] in this list.
P.M. Gruber, J.M. Wills (Eds.), ”Convexity and its applications”, Birkhäuser Verlag, Basel-Boston, Mass., 1983.
B. Grünbaum, “Convex polytopes”, Second edition, Grad. Texts in Math., 221, Springer-Verlag, New York, 2003.
M. Henk, J. Richter–Gebert, G.M. Ziegler, Basic properties of convex polytopes, Chapter 15 in [19] in this list.
G. Ivanov, Tight frames and related geometric problems, Canad. Math. Bull. 64 (4) (2021), 942 – 963.
W. Jockusch, The lower and upper bound problems for cubical polytopes, Discrete Comput. Geom. 9 (2) (1993), 159 – 163. doi.org/10.1007/BF02189315.
A. Joós, Z. Lángi, Isoperimetric problems for zonotopes, Mathematika 69 (2) (2023), 508 – 534.
P. McMullen, On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91 – 109.
P. McMullen, Space tiling zonotopes, Mathematika 22 (1975), 202 – 211.
P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980), 113 – 121.
P. McMullen, Acknowledgement of priority: “Convex bodies which tile space by translation”, Mathematika 28 (2) (1981), 191.
P. Mürner, Translative Parkettierungspolyeder und Zerlegungsgleichheit, Elem. Math. 30 (1975), 25 – 27.
M.J. de la Puente, P.L. Claverı́a, Isocanted alcoved polytopes, Appl. Math. 65 (6) (2020), 703 – 726.
M.J. de la Puente, P.L. Claverı́a, The volume of an isocanted cube is a determinant, Linear and Multilinear Algebra (03 Jul 2024) doi.org/10.1080/03081087.2024.2368240.
S.A. Robertson, Polytopes and symmetry, London Math. Soc. Lecture Note Ser., 90, Cambridge University Press, Cambridge, 1984.
R. Schneider, “Convex bodies: the Brunn–Minkowski theory”, Encyclopedia Math. Appl., 44, Cambridge University Press, Cambridge, 1993.
E. Schulte, Symmetry of polytopes and polyhedra, Chapter 18 in [19] in this list.
M. Senechal (ed.) “Shaping space”, Exploring polyhedra in nature, art, and the geometrical imagination, Springer, New York, 2013.
G.C. Shephard, Combinatorial properties of associated zonotopes, Canadian J. Math. 26 (1974), 302 – 321.
V. Soltan, “Lectures on convex sets”, Seocnd edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
A.C. Thompson, “Minkowski geometry”, Encyclopedia Math. Appl., 63, Cambridge University Press, Cambridge, 1996.
F. Vallentin, A note on space tiling zonotopes, arXiv:math/0402053, 2004.
R. Webster, “Convexity”, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1994.
G.M. Ziegler, “Lectures on polytopes”, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995.
G.M. Ziegler, Convex polytopes: extremal constructions and f -vector shapes, in “Geometric combinatorics”, IAS/Park City Math. Ser., 13, American Mathematical Society, Providence, RI, 2007, 617 – 691.
C. Zong, “Strange phenomena in convex and discrete geometry”, Universitext, Springer-Verlag, New York, 1996.
C. Zong, What is known about unit cubes, Bull. Amer. Math. Soc. (N.S.) 42 (2) (2005), 181 – 211.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The author

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.