The easiest polynomial differential systems in R^3 having an invariant cylinder

Authors

  • J. Llibre Departament de Matemàtiques, Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain
  • L.P. Serantola Departamento de Matemática, Ibilce–UNESP 15054-000 São José do Rio Preto, Brasil

DOI:

https://doi.org/10.17398/

Keywords:

Polynomial differential systems in R3, hyperbolic cylinder, parabolic cylinder, elliptic cylinder

Abstract

This paper answers the following two questions: What are the easiest polynomial differential systems in R3 having an invariant hyperbolic, parabolic or elliptic cylinder?, and for such polynomial differential systems what are their phase portraits on such invariant cylinders?

Downloads

Download data is not yet available.

References

J. Benny, S. Jana, S. Sarkar, Invariant circles and phase portraits of cubic vector fields on the sphere, Qual. Theory Dyn. Syst. 23 (3) (2024), Paper No. 121, 23 pp.

M.I. Camacho, Geometric properties of homogeneous vector fields of degree two in R3 , Trans. Amer. Math. Soc. 268 (1981), 79 – 101.

W.A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293 – 304.

G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. Astro., Série 2 2 (1878), 60 – 96; 123 – 144; 151 – 200.

F. Dumortier, J. Llibre, J.C. Artés, “ Qualitative theory of planar differential systems ”, Springer-Verlag, Berlin, 2006.

M.W. Hirsch, C.C. Pugh, M. Shub, “ Invariant manifolds ”, Lecture Notes in Math., Vol. 583, Springer-Verlag, Berlin-New York, 1977.

J.P. Jouanolou, “ Equations de Pfaff algébriques ”, Lectures Notes in Math., 708, Springer, Berlin, 1979.

J. Llibre, Integrability of polynomial differential systems, in “ Handbook of differential equations ” (edited by A. Cañada, P. Drabek and A. Fonda), Elsevier/North-Holland, Amsterdam, 2004, 437 – 533.

J. Llibre, R. Ramı́rez, V. Ramı́rez, N. Sadovskaia,, The 16th Hilbert problem restricted to circular algebraic limit cycles, J. Differential Equations 260 (7) (2016), 5726 – 5760.

J.E. Massetti, Attractive invariant circles à la Chenciner, Regul. Chaotic Dyn. 28 (4-5) (2023), 447 – 467.

M. Messias, M.R. Cândido, Analytical results on the existence of periodic orbits and canard-type invariant torus in a simple dissipative oscillator, Chaos Solitons Fractals 182 (2024), Paper No. 114845, 12 pp.

C. Pessoa, J. Llibre, Homogeneous polynomial vector fields of degree 2 on the 2-dimensional sphere, Extracta Math. 21 (2006), 167 – 190.

C. Pessoa, J. Llibre, Phase portraits for quadratic homogeneous polynomial vector fields on S2 , Rend. Circ. Mat. Palermo (2) 58 (2009), 361 – 406.

J. Sotomayor, “Lições de equações diferenciais ordinárias”, Projeto Euclides, 11, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1979.

X. Yang, J. Xu, S. Jiang, Persistence of degenerate lower dimensional invariant tori with prescribed frequencies in reversible systems, J. Dynam. Differential Equations 35 (1) (2023), 329 – 354.

J. Zhong, Y. Liang, Invariant tori and heteroclinic invariant ellipsoids of a generalized Hopf-Langford system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 33 (13) (2023), Paper No. 2350153, 16 pp.

Downloads

Published

2025-02-20

Issue

Section

Articles in press

How to Cite

The easiest polynomial differential systems in R^3 having an invariant cylinder. (2025). Extracta Mathematicae. https://doi.org/10.17398/