Virtually (r; r_1, ... , r_n ; s)-nuclear multilinear operators
DOI:
https://doi.org/10.17398/Keywords:
Multilinear operators, nuclear operators, summing operatorsAbstract
In this paper, the space of virtually (r; r_1, ... , r_n; s)-nuclear multilinear operators between Banach spaces is introduced, some of its properties are described and its topological dual is characterized as a Banach space of multiple absolutely (r'; r'_1, ... , r'_n; s')-summing multilinear operators.
Downloads
References
D. Achour, Multilinear extensions of absolutely (p; q; r)-summing operators. Rend. Circ. Mat. Palermo (2) 60 (3) (2011), 337-350.
A.T. Bernardino, D. Pellegrino, J.B. Seoane-Sepulveda, M.L.V. Souza, Absolutely summing operators revisited: New directions in the nonlinear theory, arXiv:1109.4898v2 [math.FA], 26 Dec 2011.
B.M. Cerna, “Operadores Multilinears p-fatoraveis”, PhD, UMICAMP, Campinas, 2005.
B.M. Cerna, Some properties of multi-linear operators F nuclear type, Int. J. Pur. Appl. Math. 56 (1) (2009), 143-154.
C.P. Gupta, On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Indag. Math. (Proceedings) 73 (1970), 356-358.
J.T. Lapresté, Op´erateurs sommants et factorisations `a travers les espaces Lp, Studia Math. 57 (1) (1976), 47-83.
B. Malgrange, Existence et approximation des solutions des equations aux d´eriv´ees partielles et des ´equations des convolutions, Ann. Inst. Fourier, Grenoble, 6 (1955/56), 271-355.
M.C. Matos, On multilinear mappings of nuclear type, Rev. Mat Univ. Complut. Madrid. 6 (1) (1993), 61-81.
M.C. Matos, Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Collect. Math. 54 (2) (2003), 111-136.
M.C. Matos, “Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations”, Relat orio, IMECC-UNICAMP, 2007.
A. Pietsch, “Operator Ideals”, Deutscher Verlag der Wissenschaften, Berlin, 1978; North-Holland, Amsterdam-London-New York-Tokyo, 1980.