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Abstract: The action of the subgroup G2 of SO(7) (resp. Spin(7) of SO(8)) on the Grassmannian

space M = W@)@) (resp. M = W@)@) is still transitive. We prove that the spectrum

(i.e. the collection of eigenvalues of its Laplace-Beltrami operator) of a symmetric metric go on M
coincides with the spectrum of a Go-invariant (resp. Spin(7)-invariant) metric g on M only if go
and g are isometric. As a consequence, each non-flat compact irreducible symmetric space of non-
group type is spectrally unique among the family of all currently known homogeneous metrics on
its underlying differentiable manifold.
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1. INTRODUCTION

Any Riemannian manifold (M, g) has naturally associated a distinguished
second order differential operator called the Laplace-Beltrami operator A,.
When M is compact, its spectrum Spec(M,g) := Spec(4d,) is real, non-
negative and discrete. Two compact Riemannian manifolds (Mj,g1) and
(Ma, go) are called isospectral if Spec(Mi, g1) = Spec(Ma, g2).

It is expected that compact Riemannian manifolds with distinguished geo-
metrical properties are spectrally unique, that is, any isospectral Riemannian
manifold is necessarily isometric. In this article we consider the compact sym-
metric spaces as geometrically distinguished manifolds. Since this problem is
still very difficult (e.g. it is not known whether a round sphere of dimension
at least 7 is spectrally unique among orientable Riemannian manifolds), we
restrict the family to compact homogeneous Riemannian manifolds. We refer
to the first part of this series, [13], for a recent account of previous results on
this subject.

This article focuses in the following particular and natural question:
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QUESTION 1.1. Is any non-flat compact irreducible symmetric space
(M, g) spectrally unique within the space of homogeneous Riemannian
metrics on M?

The non-flat assumption is due to the existence of isospectral and non-
isometric flat tori. We next summarize partial answers to Question The
cases of compact rank one symmetric space were solved in [3] (see [19, 111 [15]
for the particular cases of S® and P3(R)).

The cases M = K = diKﬁ(KK)’ with K a compact simple Lie group, has
the great difficulty that in most cases it is not know whether the space of
left-invariant metrics Mieg (K) includes all homogeneous Riemannian metrics
on K. Moreover, the problem is already difficult restricted to the family
Mg (K). Gordon, Schueth and Sutton [6] proved that any symmetric (i.e. bi-
invariant) metric gg on K is spectrally isolated within Mg (K), that is, there
is a neighborhood V' around gg such that no metric in V' \ {go} is isospectral
to go. Furthermore, the only particular cases fully solved are SU(2) ~ S3,
SO(3) =~ P3(R), and Sp(n) for any n > 1 by [12].

The remaining cases are compact irreducible symmetric spaces of rank > 2
of non-group type (i.e. it has a symmetric presentation G /K satisfying that
G is simple). Again, the space of homogeneous metrics on the corresponding
underlying differentiable manifold is not classified for most of cases. The only
cases that we know they admit homogeneous metrics are the following;:

SO(2n) _ SO(2n — 1)

e (®") = 5 % T
ny . SU(@2n)  SU(2n—1)
S5 = S = S 1) ¢ .
S0(T) L Gy ‘
Grz (R) := SO(2) x SO(5)  U(2)’
iy (25) o= SO) . Spin(D)

SO(3) x SO(5)  SO(4) -

The first two are the space of orthogonal complex structures on R?" and
the space of quaternionic structures on C?” compatible with the Hermitian
metric, which are of type DIII and AII respectively. The other two are the
Grassmannians of oriented real 2-dimensional subspaces of R” and real 3-
dimensional subspaces of R®, both of type BDI.

The first presentation G/K for each case in is the symmetric pre-
sentation, satisfying at the Lie algebra level that § = £ @ m and [m,m] C €
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The second presentation G/H allows us to describe the currently know ho-
mogeneous metrics on each of them, as the space of G-invariant metrics on
G/H. In each case, G is a subgroup of G such that its action on G/K is still
transitive. These metrics were discovered by Onishchik [I7].

Question for the first two symmetric spaces in has been answered
affirmatively in [13]. The main goal of this article is to complete the other
two cases in , to obtain the following main result.

THEOREM 1.2. Let G/H denote the second presentation of the symmetric
space M = G /K of any of the cases in (1.1)). If a G-invariant metric on M is
isospectral to a symmetric metric on M, then they are isometric.

It is highly expected that any homogeneous and non-symmetric metric
on the underlying differentiable manifold of a compact irreducible symmetric
spaces of non-group type and rank > 2 is isometric to a G-invariant metric of
G/H as in (see e.g. [7, Remark 1.3]). If this is the case, then Theorem
combined with [3] imply that the answer to Question |1.1}is affirmative for
all compact irreducible symmetric spaces of non-group type of arbitrary rank.

We next move to an application. Cao, Hamilton and Ilmanen (see [4,
Theorem 1.1]) proved that a compact Einstein manifold (M, g) is v-unstable
if

)\I(Ma g) < 2E7

where E is the Einstein constant of (M,g) (i.e. Re(g) = Eg) and A\ (M, g)
denotes the smallest positive eigenvalues of the Laplace-Beltrami operator of
(M, g). Furthermore, Kroncke [10, Theorem 1.3] proved that a v-unstable Ein-
stein manifold of positive scalar curvature is necessarily dynamically unstable.
See [10] for their definitions.

There are (up to positive scalars) two non-symmetric Go-invariant Einstein
metrics on the space Gro (R7). We prove in Subsection that one of them
is v-unstable. Similarly, we prove in Subsection that the non-symmetric
Spin(7)-invariant Einstein metrics on Grs (Rg) are v-unstable.

2. PRELIMINARIES

Almost all preliminaries contents necessary for this article are in [I3] §2].
We begin this section by summarizing them.

Let G be a compact Lie group and H C G a closed subgroup, with Lie
algebras g and b respectively. Let p be an Ad(H )-invariant complement of b
in g, thus g = h @ p and [h,p] C p.
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We fix a G-invariant metric g on G/H associated with an Ad(H )-invariant
metric (-,-) on p. The spectrum of the Laplace-Beltrami operator A, associ-
ated to (G/H,g) is given by

Spec(G/H, g) := Spec(Ay) = | J {{ NE(g), - NT(g) 1< < df}}, (2.1)

~ ~~

el dr-times

where G is the set of equivalence classes of irreducible representations of G,
dy = dim Vg, d = dim V¥, and A\7(g),..., Alu(g) are the eigenvalues of the
self-adjoint linear endomorphism

dim p
T(=Cy)lym = — Z m(X;)? - VHE L vH
i=1 g
where {X1,..., Xgimp} is any orthonormal basis of p with respect to (-, -) and

Cy =>"" | X?2. The operator 7(—Cy)|y = is uniquely determined by g, though
the element Cj, which lies in the universal enveloping algebra U(g), is not well
defined; see [13, Remark 2.2].

Let B be an Ad(G)-invariant inner product on g. We next introduce strong
hypotheses that will hold in the next two sections. We assume that there
exist a closed subgroup K of G, with Lie algebra £, such that H C K C G.
Moreover, we also assume that there are H-invariant subspaces p1,p2,p3 of p
such that p = p1 @ p2 © p,

tE=Hdps, g=t (p1 ® pa2), with p; @ po invariant by K. (2.2)

For any r = (r1,r2,73) € R3 ), we set

1 1 1
(- )r = EBIPI D %B|P2 D %Bhos-

It follows that the inner product (-,-), is Ad(H)-invariant, so it induces a
G-invariant metric g, on G/H.

We fix r € ]Rio, 7€ Gandv € VWH. For each index h = 1,2,3, let
{XYL), . .,X](,ZL)} be an orthonormal basis of p;, with respect to Bl,, (pn =
dim py). It follows that Ui:l {thfh), . ,Tthf)} is an orthonormal basis of
p with respect (-,-), and therefore
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p1 p
m(=Cy,) v =— Z ’I“%TF(XZ(ll))g cv— Z 7‘27T(XZ(22))2 v
i1=1 in=1
p3
= > dn(x))’ v
iz=1
SO IR S (3)y2
<ot (- S S S )
i1=1 ip=1 iz=1
- (2.3)
(- Y w(xP) v
ip=1
D3 dim b
=) (- 3R Y ()
ig=1 j=1
= 7“%77( — Casg’B) “v+ (7‘% — 7‘%) Yr(v)
+ (r% — r%) 7r( — Casg p|, ) - v,
where {Z1,..., Zqim¢} is any orthonormal basis of b with respect to By,
dimpg -~
Te(w)=— > a(x) v (2.4)
ip=1

(the authors have kindly called it the ‘tricky term’), and Casg g (resp. Casg p,)
is the Casimir operator of g (resp. ) with respect to B (resp. Bl¢). In the
second identity we used that 7(Z) - v = 0 for all Z € h because v € V7.

It is well known that Casimir elements acts on irreducible representations
by calculable scalars; see [13], §2.2] for a rigorous definition and its properties.
In particular Casgp-v = A v for all v € Vi, with A} = B*(Ar, Ax + 2pg),
where A, is the highest weight of 7 (once a maximal torus of G and a Weyl
chamber are chosen). However, it is quite difficult to obtain an eigenbasis of
m(—Cy,) in this generality since it may occur that 7(— Casgp),) and Y do
not necessarily diagonalize simultaneously. Consequently, we do not expect
an explicit description of Spec(M, g,). However, the next remark determines
the eigenvalue contributed by © € G such that dim VH = 1, which will be
enough for our purpose.
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Remark 2.1. Let m be an irreducible representation of G such that dim V7
= 1. On the one hand, the condition dim V¥ = 1 forces there is exactly one
representation 7 € K occurring in 7|k (i.e. Homg (V;, Vi) # 0) satisfying that
VI #£0. Thus (- Casgp,) - v = Ag), for all v e Vi

On the other hand, Y, preserves V! since m(—Cy,), (- Casyp), and
m(— Casg g,) do it. Hence, T acts on V.H by an scalar, say v™.

We conclude from and that 7 contributes to Spec(G/H, g,) with
the eigenvalue

N (r) = Mg rd + o7 (r% — r%) + /\E‘E (r% — r%)

— (AT — T — AT 2 -~ AT 2 (25)
i( B v B‘E) Tl +v 7“2—!- B‘Er?”

with multiplicity dim V.
3. THE cASE Grs (R")

In this section we consider the compact irreducible symmetric space of
oriented two-planes in R” denoted by Gry (R7).

3.1. HOMOGENEOUS METRICS FOR Gry (R7). Let

GI“Q (R7) == S()SO(7)
(5) x SO(2)

Since this presentation is symmetric, the isotropy representation is irreducible

and consequently every SO(7)-invariant metric on Gry (R7) is symmetric. We

next define a non-symmetric presentation Grs (]R7) = G/H having a three-

parameter family of G-invariant metrics, which are of course homogeneous.

Let G be the (unique up to conjugation) subgroup of SO(7) with Lie
algebra of exceptional type Ga. It is well known that the action of G on
Gro (R7) is still transitive and the isotropy subgroup H at the trivial element
is isomorphic to U(2).

Let T" be a maximal subgroup of H, which is also a maximal torus of G
since rank(G) = rank(H) = 2. As usual, we denote by 1,2, e3 the elements
satisfying that II(gc,tc) = {1 := g2 — €3, ag := &1 — 29 + £3} is a simple
root system and t¢. = {23:1 a;g; : a1, az,a3 € C, a; +az+az = 0}. This gives
fundamental weights wy := &1 — €3, wo := 261 — €9 — €3, and the positive root
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System
€9 — €3, €1 — 2e2 t+e€3,
Pt (ge,te) = e1—e2, €142 — 2e3,
€1 — &3, 261—52—63

It will be useful the root space decomposition

gc=tc® P (G090 (3.1)

a€®T(gc,tc)

Without loosing generality, we pick H the subgroup of G such that its Lie
algebra h satisfies h = tc @ gp @ g_p, where 8 =e1 +e9 — 263 € DT (gc, te).
Let K be the connected subgroup of G such that its Lie algebra ¥ satisfies

(I)+(E(c, f(;) = {61 —2e9+e3,€1 92— 2e3, 261 — €3 — 63}, (3.2)

which is isomorphic to SU(3). One can see that the corresponding simple
roots are 51 := €1 + €2 — 2¢3 and By := €1 — 269 + €3, and the fundamental
weights are v := &1 — €3, 19 1= €1 — €9.

We pick B = —By as our Ad(G)-invariant inner product, where By is the
Killing form of g.

Let q denote the orthogonal complement of £ into g. It turns out that q is
irreducible as a K-module, or in other words, G/K is an isotropy irreducible
space (see for instance [2, 7.107]). From and (3.2)), it follows that

4C = Be1—e2 D G—c1+en D Ber1—e3 D G—c14e3 D Bey—e3 D G—cotes-
However, as an H-module, we have the decomposition q = p; @ po with py, p2
irreducible, and
(pl)C = Oe1—e5 D Oci1tes D Ber—es D G—entes;
(P2)C = Be1—e0 D G—c e

Let p3 be the orthogonal complement of h in £, which is irreducible as an
H-module and

(Pg)c = Ge1—2e0+e3 D G—e142e0—25 D 9261 —ep—e3 D J—2¢ 1 4eo+e3-

Note dlmp1 =4, dim po = 2, dim ps = 4.

The decomposition p = p; @ po @ p3 satisfies condition in Section
Moreover, the subspaces pi,pa,ps are irreducible and non-equivalent as H-
modules, thus every G-invariant metric on Gry (R7) = G/H is isometric to
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gr for some r = (r1,r2,73) € R, which is induced by the Ad(H )-invariant
inner product on p given by

1 1 1
(e = gB’m ® %B|P2 ® %Bhﬂs'

3.2. THE TRICKY TERM FOR Gry (R7). This subsection is devoted to
express the tricky term Y, given in (2.4)).

For § € tf, let us denote by u¢ € tc the only element in tc such that
§(H) = Bg(H, ug) for all H € tc. Theorem 6.6 in [9] ensures that we can pick
X4 € gq for each a € ®(gc, tc) such that

Ug ifa+8=0,a>0,
[Xa, Xg] = Na,BXa+,8 ifa+pe @(g@, f(c)7
0 otherwise,

for all o, 8 € ®(gc, tc), with constant terms N, g satisfying Ny g = —N_, _3
and N2’ﬁ = 2q(1 + p)|af?, where {8+ na : —p < n < ¢} is the a-string

(0%
containing 8, and moreover,

g= @ Riug @& @ (R(Xa - X—a) S Ri(Xa + X—oz))‘
aGH(gc,tc) a€¢+(g¢j,t¢j)

One can easily check that the following elements form an orthonormal
basis of pa:

2 2 i
X} ) = %(Xal—az - X—m-l—az)v XQ( : - %(XEI_EQ +X—81+82)'

LEMMA 3.1. For any w € @, we have that
TTF(U) = 27T(X€1*€2) : (W(X*ElJrEz) : U)
for any v € V1.

Proof. An easy computation shows that

Tr(v) = T(Xgihe,)  T(Xey—ep) v+ T(Xey—ep) - (X ey gey) 0
= 27T(XE1*€2) : (W(X*EI‘FEQ) : U) - 7r(u51,52) v

Now, T C H forces V¥ c V.I', which implies that m(ue,_,) - v = 0, and
the assertion follows. |
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We now assume dim V. = 1. We set

a = Spang {u61—827X61—627X—61+62}7
W = Spang¢ {W(Xel,w)l o, (X o qe) vl > 0,0 € v

It turns out that a is a Lie algebra isomorphic to s(2,C) and W is an irre-
ducible a-module; the last part is not true if dim VWH > 1. Moreover, dim W is
odd because its zero weight is non-zero. The next goal is to obtain the scalar
for which Y, acts on V. in terms of dim WW.

We write s[(2,C) = Spanc{h,e, f} with h = (§ %), e=(38), f=(99).
For m € N, let (W, xm) denote the irreducible representation of s[(2,C) of
dimension m + 1, which is unique up to equivalence. Its weight decomposition
is given by Wy, = @~y Win(m — 2i), with W,,,(m — 2i) the weight space of
weight m — 2¢, which has dimension one, for any ¢ =0, ..., m.

LEMMA 3.2. For0 < i <m andv € Wy,(m—2i), one has 2 xm(€)-(xm(f)-
v) =2(i+1)(m —1)v.

Proof. From [0, Theorem 1.63], there is a basis {vo,..., vy} of W, such
that Xm(h) U = (m_ Qi)via Xm(e) ‘vp =0, Xm(f) *V; = Vit1 (With Um+1 = 0),
and xm(e) - v; = i(m — i+ 1)v;—1. Note that Wy, (m — 2j) = Cu; for any
j. We pick v = v; without loosing generality. Then, 2 xmm(e) - (xm(f) - v) =
2xm(e) - vit1 = 2(i + 1)(m — i)v;, as required. |

One can check that the correspondence
h€17€2 A 24 u€1*€2a 661762 SV 24X€1*€27 f€1*€2 SV 24X*E1+€2

defines an isomorphism between a and sl(2, C). Since W (0) = VI # 0, dim W
2-1

is odd and Lemma |3.2| gives 27(e) - (7(f) - v) = (dimW)7-1 W)
We conclude from Lemma [3.1] that

v for any v € VA,

Tr(v) =27(Xe)—c,) - (Tr(X*81+€2) ) U)

:(lngv for any v € V17,

provided dim V.7 =
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3.3. SOME LOW LAPLACE EIGENVALUES OF Gry (R7). According to the
description of the spectrum of the Laplace-Beltrami operator on the Rie-
mannian manifold (Gry (]R7), gr), each m € Gy contributes to the spectrum
Spec(Gra (R7),gr) with dim V¥ dim V;; eigenvalues. The goal of this subsec-
tion is to determine these eigenvalues for 7, and 7,,. We first determine the
Casimir eigenvalues.

Remark 3.3. By combining the branching laws from G = Go to K = SU(3)
by Mashimo [I6] and the spherical representations of the pair (K,H) =
(SU(3),U(2)), one can prove that Gr = G, that is, every irreducible rep-
resentation of G has non-trivial elements invariant by H. The proof is not
included for shortness, since it is not need it for our purposes.

LEMMA 3.4. For A = aje1 + ases + azes € PT(G) and pu = biey + bogo +
bses € PT(K), we have that

1
AR =A™ where  A™ = (af + a3 + a3 + 6ay — 205 — dag),

3. 1
A = g where AT = ﬁ(b%+b§+b§+6b1).

Proof. One has By(e;,e5) = 56i; and pg = 3e1 — €3 — 2¢e3, thus A\™ =
Bi(A, A +2pg) = 31 (a1(a1 4+ 6) + az(az — 2) + ag(az — 4)) = 55 (af +ad +a} +
6a; — 2az — 4a3), as claimed.

By [, p. 37), Be = §Bgle, thus A = §A by (2.8) in [I3, §2.2] and
Bi(gi,g5) = %B;(si,&?j) = L6, ; (the factor 3 is inverted after dualizing; see
[13, (2.7)]). Since pe = %Zﬁeqﬁ(ec’tc) B = 2e1 — g9 — £3, we obtain that

AT = =By (i, 11+ 2p¢) = =B (1, 11+ 2pe)
1 1
= g (ba(br +4) + ba(b = 2) + bs(bs = 2)) = 72 (bF + 03 + b5 + by ).

Note that this is consistent with A*d& = 1 since Adg = 7, 4., (i.e. the adjoint
representation of K has highest weight v + 19 = 221 —e9 —€3). |

ProprosITION 3.5. The representations ,, and m,, contribute to the
spectrum Spec(Gra (R7),gr) with the eigenvalues

1 1 1 1 3
Aw1 (r) = 57‘% + 6’[‘% and ATw2 (T) = ET% + ET% + er%?

with multiplicity 7 and 14 respectively.
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Proof. We have the weight decomposition

Ve, = Vi (0) © @D Vi, (55 — £5).

i#]
One can easily check that VI = VK = Vi, (0), so 7 = 1f is the only
irreducible representation of K satisfying [1g : 7|g][7 : 7y, |k] > 0. Moreover,
seeing Vr,, as an a-module, the irreducible subspace containing VHis W .=
Vio, (€1 — €2) © Vi, (0) © Va, (—€1 + €2). Since dimW = 3, (3.3) forces
1

Trlyn = %IdVWH, or vg = g in the notation of Remark Furthermore,

AT = % by Lemma According to Remark we conclude that m,
contributes with the eigenvalue

” i Tw T 1 2 Twy 2 1 2 1.2 1..2
A1 (r) = (A — vt — /\B"i)rl +vg°lr; +)‘BI|<@T3 =371 + §72,
with multiplicity dim Vz, =7, as claimed.
We now consider 7,,,, which is equivalent to the adjoint representation of
G, thus A™2 = 1 and its non-zero weights are precisely the roots in ®(gc, tc).

One can get from the branching rule from G to K in [16] that
WWQ‘K = Ty S¥ Tyg 57 Ty 4vo- (34)

Alternatively, the computer program Sage [18] calculates it as follows:

sage: G=WeylCharacterRing("G2", style="coroots")

sage: K=WeylCharacterRing("A2", style="coroots")

sage: b=branching_rule(G,K,"extended")

sage: omega=G.fundamental_weights ()

sage: print("checking the dimension of G(omega2):",
G(omega[2]).degree())

sage: print("branching G(omega2) to K:")

sage: G(omegal[2]).branch(K,rule=b)

checking the dimension of G(omega2): 14

branching G(omega2) to K:

A2(0,1) + A2(1,0) + A2(1,1)

Here, for non-negative integers a, b, A2(a,b) means in our notation 7,,, 4y,

The first two terms in are the standard and its contragradient rep-
resentation, and none of them contains non-trivial fixed points by H. The
representation 7,,4,, is precisely the adjoint representation of K, and its H-
invariant subspace are the elements in the Cartan subalgebra t orthogonal to
b, that is, V,{L =VH = Riu, .,. Lemma gives AL t2 = 3.

Tvi+vg B|g 4
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The a-irreducible subspace of V=~ g containing V1 is precisely a, which
has dimension 3, s0 T, |yn = %Idvﬂ{{. We conclude that 7, contributes with
the eigenvalue

7r _ (w2 Two Tvi+vo w 2 Tvi+vg 2
A2 (1) = (Ag™ — vp — A5 )13+ vp Ty Ag, T3

1.2 3,.2
—E’I"1+67“2+17"3,

with multiplicity dim Vz, = 14, as claimed. 1

3.4. SPECTRAL UNIQUENESS FOR Gro (R7). We are now ready to show
that every symmetric metric on Gry (R7) is spectrally unique withing the
space of G-invariant metrics on Gra (R7).

According to [7, §5], the symmetric metrics on Gry (R7) are

{gt = g(\/ét,\/gt,\/ﬁt) > 0}

Remark 3.6. In the notation in [7], p; and py are interchanged and @ =
8By, so x1 = %, Ty = %, and z3 = %.

The standard symmetric space (%@O(z)’ ngo(?)) is isometric to g; for

t = \/2/5. One has A1 5oy u837+ 9Baur) ) = 1 with multiplicity 21 since it is
attained at the adjoint representation of SO(7) (see [20, Table A.2]). Indeed,
we note that A™1(,/12/5 \/7 \/7 = A\wz(4/12/5 \/7 \/7

and dimm,, + dlm Tw, = 7+ 14 = 21, which 1mphes that any elgenvalue
of the Laplace-Beltrami operator of (Grg( ) gt) coming from 7 € G~
{1G, T, , Ty, } is strictly greater than A(Gra (R7), g;), for any ¢ > 0.

THEOREM 3.7. Any G-invariant metric on Gro (R7) isospectral to a sym-
metric metric on Gro (]R7) is in fact isometric to such symmetric metric.

Proof. Suppose that Spec(Gra (]R7),gr) = Spec(Gre (]R7),§t) for some r =
(ri,ma,r3) € Rio and ¢t > 0. Without loosing generality, we can assume that
t = 1, that is, g = g», with 7o = (v/6,v/3,v/2). The goal is to show that
r=To.

We mentioned above that the multiplicity of A\; = M\ Grg( )
Spec(Grz (R7), g1) is 21 This implies that A; is in Spec(Grz (R7), g,
multiplicity 21, thus ) forces

21 = Z dim V; ar,

7€Gm: A ESPEC(W(—Cgr))|V7{J

) ith
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where a, denotes the multiplicity of \; in Spec(m(—Cy,))|yu, so 0 < ar <
dim V. One can easily check that the only irreducible representations of G
of dimension at most 21 are 1g, m,,, and m,,. We know that the eigenvalue
associated to the trivial representation 1¢ is 0. Since dim V7 , = dim Vﬂi =1
(see the proof of Proposition , dimVyr, = 7, and dim V¢,
conclude that Uryy = Om,, = 1 and a, =0 for all 7 € G~ {16, Twy, Ty }-
Hence \™(r) = A" (v/6,v/3,v/2) for m = 7, , T,,, which is equivalent to

{

We now analyze the volume, which is also determined by the spectrum.
We have that

= 14, we

) (3.5)

=12 4 1,2 S=1p2 4 142

3’1 6'2 2 3’1 6'2
1,2 1,.2 3

:ﬁTl‘Fgrz‘FzTS,

oot pojot

r? = 3r3.

vol(Gry (]R7),gr) = r?implrgimmrgimp?’ vol(Gry (R7),g(171’1))

= 7"4117"37"34) vol(Gra (R7),9(1,1,1))-

Now, vol(Gra (R7),gr) = vol(Gra (R7),gr0) yields rir3r; = 2433, Substituting
r? = 3r3 in it, we obtain that

rar§ = 243. (3.6)

By replacing r3 = 15 — 672 from the first row in (3.5) above, we get 0 =
ri0 — 2r8 18
37— 2T3 T O

The polynomial f(z) := z° — 3z* + 8 satisfies f(0) = 8 > 0, f(2) = 0,
f'(z) = 523(z — 2) and lim, oo f(7) = +o0. It follows that f(z) vanishes
only at z = 2 for > 0. We conclude that 73 = v/2, which implies r = 7 by

(B:3) and (). W

3.5. HOMOGENEOUS EINSTEIN METRICS ON Gra (R7). We have that the
Einstein symmetric metric gg_, () On the space W@O@) is neutrally v-stable
according to [4]. Actually, we mentioned before that the first Laplace eigen-
value of (%’ 9B,or) I8 equal to 1 and its Einstein constant is E' = 1/2
by [2, Proposition 7.93], therefore

SO(7) -
A1 <SO(5)><SO(2)79B50(7>) —=92F.

There are two additional (up to scaling) G-invariant Einstein metrics on
Gry (R7) discovered in [I] and [8]; see also [7, §5]. These two metrics do not



104 E.A. LAURET, J.S. RODRIGUEZ

belong to a canonical variation of any of the two fibrations, which makes very
difficult the calculations of their first eigenvalue.

Taking into account the dictionary of notations in Remark between
this article and [7], the additional two G-invariant Einstein metrics g1, g2 on
Gray (]R7) have approximate parameters © = (x1,z9,23) and r = (r1,r2,73)
given by

g1 92
I 1 1
xo 0.597133339764792 5.35063404291744
xs 1.22554394913282 5.25152734929540
r?  13.3973427160359  1.49514990855887
3 8 8
r3  6.52771367820850 1.52336634047490

By using the expression for the scalar curvature in [7, p. 164], we obtain
that
scal(Gre (R7),gl) ~ 33.6319213085489,

scal(Gra (R7), g2) & 7.25191745508143.

Dividing by dim Grz (R7) = 10, we obtain E; & 3.36319213085489 and E,
0.725191745508143 of g1 and go respectively.

Although we do not have an explicit expression for the first Laplace eigen-
value of g1 and g9, we have that

A1(Gry (R7), g1) < A™1(r(g1)) & 5.79911423867862
< 6.72638426170978 = 2,

thus the Einstein manifold (Gry (R7), g1) is v-unstable.
It is not possible to obtain the same consequence for the Einstein metric
g2 because

A1 (r(ga)) & 1.83171663618629,  A™2(r(gs)) & 2.60045391440275

are both greater than 2F, = 1.45038349101629.

4. THE CASE Grs (R®)

In this section we consider the compact irreducible symmetric space of
oriented three-planes in R® denoted by Grs (R8).
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4.1. ROOT SYSTEMS FOR Grs (Rs). We consider the compact Lie groups
H :=80(4) C K := Gg C G = Spin(7).

The goal of this section is to describe these embeddings at the Lie algebra
level h C € C g and their complexifications he C tc C gc. We will identify
g=s0(7) ={X €gl(7,R) : X! + X = 0}.

We consider the maximal torus T of G such that its Lie algebra is given
by

e={diag (5, %) (5,7%). (5,7%).0) « b hoshy € iR}

Its complexification t¢c has the same expression with hq, ho,hg € C. For
i =1,2,3, we define H; € tc as above setting h; = 1 and hj = 0 for j #i. It
follows that { Hy, Ho, H3} is a C-basis of t¢. Let {e1,e9,£3} be its dual basis,
that is, Ei(Hj) = (51'7j.

One can check that By(X,Y) = —5Tr(XY) for all X,Y € g, where By
stands for the negative of the Killing form of g. We pick B = By as the
Ad(G)-invariant inner product on g fixed in Section

One has B(H;, H;) = 106; . For v = Z?:l a;e; € g, the element w, :=
+ S8 a;H; satisfies v(H) = B(H,u,) for all H € tc. We extend Bl to e
by B*(v, V") = B(uy, uy).

We pick the standard Weyl chamber such that the positive root system is
given by

dF(ge,te) ={eitej 1 1 <i<j<3}U{er,e2,e3}.

The corresponding fundamental weights are wi; = €1, we = €1 + €9, and w3 =
%(51 + 9 + £2). For a € ®(gc, tc), set Hy = BB(Z"’&). We have Hite;, =
:tHZ + Hj and Hié‘i = :|:2Hz

For a € ®(gc, tc), we denote by E,, the element in gc defined as in Example
2 in [9, §IL1]. We set Xo = colln, Where cote; = % and c_g4e; = % for
1<i<j<3,and c4., = £1 for i = 1,2,3. That is,

X€1—€2 =3 -1 i ) X—61+62 = 5 -1 —i )
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1 —i 1 i

1 —-i -1 1 i —1

X81+82 5 -1 i ) —X—El—é‘z 7 -1 —i )
i 1 —-i 1
03 03

0 1 0 1
0 —i 0 i

X€1 = 03 ) X*€1 = - 03 P

0 0

-1 i 0 -1 —i 0

and the rest can be figured out by changing indexes. Here 03 abbreviates the
zero 3 X 3 matrix.

This particular choice makes a Chevalley basis, that is, [Xq, X_o] = Hq
for all @ € ®(gc, tc), and [X4, Xg] = £(m + 1) Xo45 with m = max{a € Z :
B —aa € (g, te)}, for all o, f € (gc, tc) satisfying that o + 8 # 0.

We are now in position to describe the embeddings he C ¢ C gc. Ac-
cording to [14, §2.3], we have

ﬁal =M *H2+2H37 Yiala Yiazy
tc = Span(c Haz = Hy — Hj, Y:I:(aﬁ—ag)u Y:I:(Zal—l-az)’ 5
Yi(3a1+a2)7 Yi(30¢1+20¢2)

where
Y:I:oq = Xi(51752) + X:I:Ega Y:I:ch = Xi(sgfsgﬁ

Yi(oq-i—az) = _Xi(£1—£3) + X:t€27 Yi(2a1+o¢2) = _X:t(EQ-i-Eg) - X:l:é‘l’

Y:I:(3Oc1+oz2) = _X:I:(€1+€3)7 Y:I:(3oc1+2a2) = _X:I:(61+62)‘

Here, a; is the short simple root in ®(fc, (tN€)c) and ay is the long one.
Without loosing generality, we can assume that

b(C = SpanC{EOq 9 Yal ) Y,al}

n B (4.1)
2] Span(C{H3a1+2a2 = _Hl - H27 Y3a1+20¢27 Y—3011—2a2}‘

4.2. HOMOGENEOUS METRICS FOR Grs (R®).  We first find the irre-
ducible components of the isotropy representation of G/H.
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Since B(ga,93) = 0if a+ 8 # 0, it follows immediately that the orthogonal
complement ps of f in € with respect to B satisfies

(p3)(C = Span(C {Y:I:aza Y:I:(a1+a2)7 Yj:(2a1+0c2)7 Y:I:(3a1+a2) }

Moreover, p3 is irreducible as an H-module since (p3)c is equivalent to o3®07,
where o, denotes the irreducible representation of sl(2, C) of dimension &+ 1.

LEMMA 4.1. The orthogonal complement of ¢ in g (with respect to B)
decomposes as irreducible H-modules as p1 @ po, where

(pl)(C = Span(c {X:I:(€2+53) - %XislaX:I:(al—eg) + %Xi€2} )
(p2)c = Spang {H1 — Ha — H3, Xi(c, cy) — 5 Xtes }-

Proof. By using that [X,, X_,] = Bg(Xa, X_0a) uq for all a € ®(gc, tc)
(see for instance [J, Lemmma 2.18(a)]), one can check that Bg(Xe+e;,
X _(eite;)) = 10 for all 1 < i < j < 3, and By(X,,, X)) = 20 for all
1 <4 < 3. This allows us to prove that (pi)c @ (p2)c is orthogonal to &
by checking that every generator of (p1)c @ (p2)c is orthogonal to every gen-
erator of . For instance,

BB (X€2+€3 - %Xélvy—@m-i-az)) - _BE(X€2+837X—62—83)
+ IBg(X.,, X_.,) = 0.
The rest are very simple.

We next obtain the decomposition of (p1)c @ (p2)c as irreducible H-
modules. Since Y5 (34, 424,) acts trivially on p2 and

[YalaX—61+62 - %X—63] = H€1—62 + HEg = Hl - H2 + 2H37
[Yoc17 Hl - H2 + 2H3] == _2(X€1—62 - %X—&B)v
[YOél’XEl_EQ - %X«E:a] =0,
it follows that (p2)c is an irreducible he-submodule equivalent to oo ® 0.

Similarly, one can see that (p1)c is an irreducible hc-submodule equivalent to
or®or. 1

Note that dimp; = 4, dimps = 3, dimps = 8§, so p1, p2, p3 are pairwise non-
equivalent as H-modules. Furthermore, the decomposition p = p; & p2 @ p3
satisfies condition ([2.2)) in Section . We conclude that every G-invariant
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metric on Grg (RS) = G/H is isometric to g, for some r = (ry,7r9,73) € R?;O,
which is induced by the Ad(H)-invariant inner product on p given by

1 1 1
(e = EB’m ® %Bhﬂz ® %B|P3’

4.3. CASIMIR SCALARS AND THE TRICKY TERM FOR Grz (R®). The goal
of this subsection is to provide explicit expressions for the three individual
terms of 7(—Cj,) in (2.3), namely the Casimir operators m(— Casyp) and
m(— Casg g|,), and the tricky term Y.

We have that the sum of positive roots is 2p5 = 5e1 + 362 + 3. If mp € G
has highest weight A = Z?:l a;ei, then mp (— Casg ) acts on Vi, by the scalar

T * 1
)‘B[; = Bg(Aﬂ, Ax +2pg) = E(al(al +5) + az(az + 3) + ag(as + 1)) (4.2)

We have that By = %Bg‘g by [5, p. 37], so m(— Casgp,|,) = %W(— Casg B,)
(see [13, §2.2]). By writing the simple roots in ®(fc, t¢) in the usual way oy =
€y — &3 and ao = &1 — 289 + &3, one has the fundamental weights vy = &; — &3,
Vo = 281 — &9 — &3, and 2p¢ = 661 — 289 — 4€3. Since B:(gi,éj) = i(&j, if
T, € K has highest weight v = 23:1 bi€;, then 7,(— Casg ) acts on V;, by
the scalar

1

T 4 *
A = gBe(VaVJr?pe) Y

SIS

(bl(b1 + 6) + bg(bg — 2) + b3(b3 — 4)) (4.3)

We next move to the tricky term. Omne can check that an orthonormal
basis of ps is given by the three elements

1 1 1
X® E((Xal_@ — 5Xe) = (X ey — 5Xa0))
i 1 1
X§2) = E((Xal_az — §X53) + (X,(EI,@) — iX_83)>7
X? = (g - Hy - ).
3 \/E( 1 2 3)

Hence, for 7 € G and a weight vector v of weight p (i.e. v € Vz(p)), we have
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that

Tr(v) = —(m(X{)2 + 7(X5)? + m(X5)?) v
u(Hy — Ho — H3)? v
30
1 _27T(X81 82)77(X (e1— 62)) + 71-(I_I€1—62)
- -z +7T(X51—52) (X— ) (Xéa)ﬂ(Xf(mfaz)) "
— g (Xey)m(Xcy) + j(Hey) (4.4)

1
30< (Hl Hy — H3)2 — ,U,(2H1 —2Hy + Hg)) v

1
”(X€1—€2>77(X7(51752)) 0+ o (X )T(Xgy) - 0

30
W(Xég)ﬂ(Xf(sleQ)) " .

15
1 1

- EW(X51_52)7T(X_53) U= 15

4.4. PRESENTATIONS OF THE STANDARD AND THE SPIN REPRESENTA-
TION. The strategy to calculate the tricky term Y, (v) for v € V. is to
work with a particular presentation of the representation 7 : G = Spin(7) —
GL(V;). For our purposes, it will be enough to consider the standard rep-
resentation m,, and the spin representation ., which have highest weights
w1 = €1 and w3 = (61 + g9 + £3) respectively.

We have V., = C7, and the action is multiplication at the left. Its weights
are P(my,) = {0, £e1,+e9, £e3}. Let {e1,...,er} denote the canonical basis
of C". We set Ue, = €2j—1 —ieg; and u_.; = eg;—1 +ieg; for any ¢ = 1,2, 3, and
up = ey7. It follows that u,, is a weight vector of weight p and {u, : p € P(m,)}
is a basis of Vr,, . Moreover, one can easily check that the non-trivial actions
between an element X, with o € ®(gc, tc) and u, with p € P(m,,) are in
Table Il

Table 1: Representation table of the standard representation m,,, of gc = s0(7,C).

Xai—aj “Ue; = Uegy, Xai—i-aj TU—g; = Ugy, Kep, U = Ugy,
Xej—ej " Ug; = —U_g, Kejte; " U—g; = —Ugy,  Xgp - u—g, = —2up,
X_Ei‘i'aj U—g; = TU—gy, X_Ei_Ej TUg; = —U—g;, X gy U = —U—gy,

X_€i+5j “Ueg; = Ugj, X_Ei_fj “Ug; = U—g;, X _¢p, - Ugy, = 2up.

forevery 1 <i<j<3and1l<k<3.
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We now move to the spin representation m,,. There are several presenta-
tions of it (see e.g. [9, Chapter V, Problems 16-27]). For shortness reasons, we
will give a particular basis of weight vectors with the corresponding actions
of the basis of gc. We have

P(Tug) = {5(Fe1 oo te3)} = {Fws} U{E(ws —g;) 1 1 <i < 3},

each of them with multiplicity one. One can check that there is a basis {v,, :
p € P(mwy)} of Vo, with v, € Vg, (u) for all u, such that the non-trivial
elements of the form X, -v, for a € ®(gc, tc) are shown in Table Note that
Xo - vy # 0 if and only if o + p € P(ny,). Of course, my, (H) - v, = p(H) v,
for all H € tc.

Remark 4.2. In the notation of [9, Chapter V, Problems 19-27], one has
Vs = 2@ Vwgz—eo = 2%2}7 Veg—ws = Z{1,2}7 Vey—w3 = Z{2,3}7 Vwg—e1 = Zj(]_}a

) _ !
Vws—es = Z(3}> Vea—ws = #{1,3}» V-ws = 271 23}

4.5. SOME LOW LAPLACE EIGENVALUES OF Grs (R®). The main goal
of this section is to obtain the eigenvalues in Spec(Grs (]RS), gr) contributed
via by the irreducible representations 7, and m,, 1, of G = Spin(7)
with highest weights w3 = %(51 +e2+e3) and wy + w3 = %(351 + &2 +€3)
respectively. We can deal with both simultaneously because the decomposition
Ty @ Mg 2 Moy +ws P Ty, Which ensures that there are G-invariant subspaces
V, and Vr  of Vi, ® Vg, which are irreducible as G-modules with

Twytwg Twy
highest weights w1 + w3 and ws respectively, satisfying that
Vi, @ Viroy = Vi g ® Vi - (4.5)

Of course, {u, ® vy : p € P(my,), n € P(mu,)} is a basis of Viw, @ Vi -
Remember the action of X € gc is given by X - u®@ v = (7, (X) - u) @ v +
U® (ng (X) - v). Therefore, Tables allow us to compute X, - u, ® v, for
every root a € ®(gc, tc). Furthermore, it turns out that u, ® v, is a weight
vector of weight p + 0, thus H cdotu, ® v, = (u+n)(H) v, @ vy. Note that,
unlike 7, and m,,, there are weights of m,, ® m,, with multiplicity greater

than one.
LeEMMA 4.3. We have that (V,, ® VMS)H = Spanc{w,wa}, where

w1 = usl X U—u)3 - 4u—€2 X Uw3—€3 + 2“62 & Usg—wg, + 8“—51 X ULU37

W2 = Ugq & Veg—w3 — 2“0 X Vwz—eq + uo ® Veq—ws + 2“—83 ® Vwg—eqg -
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Table 2: Representation table of the spin representation 7, of gc = s0(7,C).

Xf:‘l *Vwz—e1 = _2vw37 Xé‘l *Veg—w3 = —2 Vws—eas
Xf;‘l *Veg—ws = _27)0.13—837 Xe’;‘l *V—wg = —2 Ve1—ws»
XEQ *Vwz—eg = _2UW3) XEQ *Veg—w3 = 2/1}0.)3—817
Xey " Vej—wg = —2Vwz—e3, Xey  Vwy = 2Vey—wy)
X63 *Vwz—e3 = _2'Uw37 X€3 *Veg—w3 = 2vwg—€17
XE3 *Vgi—w3 = 27}&)3—827 X&‘g Vw3 = —2 Vez—wsg»
X—El : Uw3 = _§Uw3—617 X—81 . Uwg,—&‘g - — 9 v€3—wg7
X—El *Vwz—e3 = 75 Veg—ws)» X—El *Vei—w3 = _%/U—w;ga
X ey Vw3 = =5 Vwz—ea; X ey Vus—e; = %UES*O-B’
Xey " Vug—e3 = — 3 Ver—ws> X_er " Vey—uwy = %U—ws’
X—63 * Vw3 = _va3—837 X—é‘g *Vwz—e1 = %vez—wga
X—Eg *Vwz—eq = %val—wga X—Sg *Veg—w3 = _% V—ws),
Xal—ag : vw3—51 = _UUJ3—825 Xa‘1—a‘2 : U&Q—UJ3 = _Ual—wg,
Xei—e3 " Vwg—e; = —Vwg—e3s Xej—e5  Veg—ws = Vey—ws,
X€27€3 : UUJ3*€2 — _Uwgfsga X€2*€3 : Usgfwg — _’U€2*w37
X—61+€2 " Vwg—ey = ~Vwz—ers X—61+62 *Vegi—w3s = " Veq—ws3>
X—61+63 : UL«J3—€3 - _UUJ3—€17 X—€1+63 : Ual—wg, - U63—w37
X —eotes  Vwsz—e3 = —Vwz—eas X eotes  Vez—wy = —Vez—wss
XEl-‘rEQ *Vez—w3z = 4’00.)35 X81+82 Vg = 4/1}0.)3—837
Xeites  Veg—wy = 4 Vg, Keites " V—wy = —4Vuz—ey,
Xegtes  Vey—wy = 4 Vg, Xegtes * V—wy = 4Vuy—ey,
X—El—ez * Vw3 = %Usg—u&a X—61—62 *Vwz—e3 = %v—wgn
X—61—63 * Vw3 = ivag—wg,a X—81—83 *Vwz—eq = _% V—ws),

_ 1
X—EQ—Eg * Vg = Zv€1—UJ37 X—€2—83 *Vwz—e1 = ZU—W3-
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Proof. We have that
H _ b heNt
(Vﬂ'wl ® VWW3) - (Vﬂ'wl ® V7Tw3) ¢ C (Vﬂ'wl ® V7Tw3) e
= @ (Vﬂ'wl ® Vﬂ'w&)(lu’ + 77)

#GP(Wul ))7767)(7“03)
(pu+n)(H)=0 YHehcNtc

= (Va, © Vi, ) (3(e1 — 2 — €3))
& (Vao, ® Vi) (5(—€1 4 €2 + £3))
Ugy @ V_tygy U—gg @ Vpyg—e3, Uy @ Veg—ws,
= Span(c U—gq ® Vs Ues ® Veg—wsz,y UQ ® Vwz—e1 >
Uup ® Vey—ws3 s 4 U—gg ® Vwz—ea
In the penultimate identity was used that { H; — Hy+2H3, H1+ Hs} is a basis of
heNte. The last identity follows by finding all ways to write i%(al —g9—¢3) =

w~+n with g € P(my,) and n € P(7y,)-
In order to determine (V, ® Vg, )Y, it remains to find which C-linear

7'K'W1

combinations of these 8 elements are vanished by the generators of hc as in

(4.1), namely, Yia, = Xi(cy—e,) + Xaiey and Yi(3a,4200) = Xi(ey4ey)- More
precisely, we look for a+., for + =1,2,3 and aac in C such that the element

W I= ey Ugy D Vg T Qgy U—gy @ Vg —eg T ey Uey & Vez—wy
+ A_g; U—gq X Vws + Aeqy Ugq ® Veg—ws + (Za ) X Vwz—eq

+
tag Up ® Vey—ws T A—gy 4U_cy @ Vig—ey

satisfies Xy(c;4ep) - w = 0 and (Xi(e;—ep) + X4ey) - w = 0. This long but

straightforward procedure returns the conditions a_., = —4ae,, e, = 2a,,
G_gy = 8agy, Az = aar, gy = 2(15{, and a; = —2a§, which completes
the proof. 1§

Remark 4.4. One can check via long calculations that w; + 2ws € V,gs

and —3wj + 8wy € Vﬂfi s though it will not be necessary.

We are now ready to obtain explicit expressions for Casimir scalars and
the tricky term. From (4.2), it follows that

Amea — 21 Moy _ 49
B 407 B 40
The branching law from G = Spin(7) to K = Go gives

Tws ’K ~T10D Tvis T +ws ’K >~ Ty, S5 Tuo D T2u - (46)
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Similarly, the branching law from K to H of the irreducible components ap-
peared above give

T0|m = 00 ® 00,

Tu o = 01 ® 01 ® 02 ® 0, (47)
Tu|H = 02 ® 09 ® 09 ® 02 B 03 ® 071,
Tou |H = 00 ® 00 B 01 ® 01 B 02 ® 09 B 03 R 01 D 04 Q 0.

Sage [18] calculates them as follows:

sage: G=WeylCharacterRing("B3", style="coroots")
sage: K=WeylCharacterRing("G2", style="coroots")
sage: H=WeylCharacterRing("AlxAl1l", style="coroots")
sage: bl=branching_rule(G,K,"miscellaneous")
sage: b2=branching_rule(K,H,"extended")

sage: omega=G.fundamental_weights ()

sage: nu=K.fundamental_weights ()

sage:

sage: print("branching to K of G(omega3):")

sage: print(G(omega[3]).branch(K,rule=b1l))

sage: print("branching to K of G(omegal+omega3):")
sage: print(G(omega[1]+omega[3]).branch(K,rule=b1))
sage: print("----")

sage: print("branching to H of K(0):")

sage: print(K(O*nu[1]).branch(H,rule=b2))

sage: print("branching to H of K(nul):")

sage: print(K(nu([1]).branch(H,rule=b2))

sage: print("branching to H of K(nu2):")

sage: print(K(nu[2]).branch(H,rule=b2))

sage: print("branching to H of K(2nul):")

sage: print(K(2*nu[1]).branch(H,rule=b2))
branching to K of G(omega3):

G2(0,0) + G2(1,0)

branching to K of G(omegal+omega3):

G2(1,0) + G2(0,1) + G2(2,0)

branching to H of K(0):

A1xA1(0,0)

branching to H of K(nul):

AlxA1(1,1) + A1xA1(2,0)

branching to H of K(nu2):

A1xA1(2,0) + A1xA1(3,1) + A1xA1(0,2)

branching to H of K(2nul):

A1xA1(0,0) + A1xA1(1,1) + A1xA1(2,2) + A1xA1(3,1)
+ A1xA1(4,0)

Here, for non-negative integers a,b, G2(a,b) and A1xA1(a,b) means in our
notation 74y, +bv, and o, ® oy respectively.
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For any 7 € K , dim V.7 is the number of times that the trivial representa-
tion 09 ® og of H appears in 7|g. It follows immediately from (4.6|) and (4.7])
that

dim V! =dim V7 +dimV? =1
s ! (4.8)
dimV}/ —=dimV! +dimV? +dm VY =1.
Vl V2 Vl

Twy +ws

Consequently, we are in the situation of Remark for m,, and Ty, 4ws-
Moreover, using (4.3]), we have that 7, ( — Casg p|, ) acts on V,,H3 and V,,I'WI s
by multiplication by the scalars

1
T __ T2l/1 _ .
Ap Ble =0 and /\B\e =1 respectively.
Long and tedious calculations using (4.4]) give

Tﬂw1®7rw3 (wl) = E ws for 1 = 1, 2,

where wq and wo are as in Lemma Equivalently, Tr  @n,, \(le DV ) =
i Id(Vm1 DV )1 Moreover, (4.5) forces Yr,, and Ty, acts by the scalar 4%

on VH and VH respectlvely In other words, v™3 = vTwitws = 4% in the
notation of Remark 211

We are now ready to obtain explicit expressions for the eigenvalues A3 (7 )
and A\[“'7“3 (1) via the formula A\ (r) = (AF — o — ARy, )r¥+ouTrs + AL, 3

in (2.5) for any r = (r1,72,73) € R :

21 9 9 3 9
)\7"&)3 - 7 2 72
1) = <4o 40) RIS
Twi+ws 2 2, 14 (4.9)
M=) Tt T '

4.6. SPECTRAL UNIQUENESS FOR Grg (RS). We are now ready to prove
Theorem for Grs (RS), namely, every symmetric metric on Grs (RS) s
G/H, with G = Spin(7) and H = SO(4), is spectrally unique within the space
of G-invariant metrics on Grg (RS).

According to [7, §6], the symmetric metrics on G/H ~ Grs (]RS) are

{gt = g(\/ﬁt,ﬂt,\/gt) Tt > O}
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Remark 4.5. In the notation in [7], p; and py are interchanged and @ =

_ 10 _ 10 _ 10
10 By, so x1 = 2 T2 =0 and x3 = 2

The standard symmetric space (%@)(3)7 gBMs)) is isometric to g; for

t = 4/5/18. One has A\ (%@)(3),935“8)) = %; it is attained at the repre-
sentation A C® of SO(8), so its multiplicity is (g) = 56 (see [20, Table A.2]).
Note that A™1 (1/10/3,/10/9,/5/6) = A\™1+ws (,/10/3,1/10/9, /5/6) = 2
and dimm,, + dimm,, 4w, = 7 4+ 49 = 56, which implies that any eigen-
value of the Laplace-Beltrami operator of (Grs (RB),gt) coming from 7 €
G~ {lg, Tty Ten 4wy } 18 strictly greater than Aq(Grs (R®), g;), for any ¢ > 0.

THEOREM 4.6. Any G-invariant metric on Grs (Rg) ~ GG/ H isospectral to
a symmetric metric on Grs (RS) is in fact isometric to such symmetric metric.

Proof. Suppose that Spec (Gr3 (RS),QT) = Spec (Gr3 (RB),gt) for some
r=(ry,re,r3) € R?;O and ¢t > 0. Without loosing generality, we can assume
that ¢ = 1, that is, g1 = gr, with rg = (\/E,Q,\/g). The goal is to show
that r = rg.

The multiplicity of the eigenvalue A=\ ( Grs (RB) , gl) in the spectrum
Spec (GI‘g (RS),gl) is 56. Therefore \; is in Spec (Gr3 (RS),gr) with multi-
plicity 56, thus forces

56 = > dim Vj a, (4.10)
7re@H:xlespec(yr(—cw))|VﬂH

where a, denotes the multiplicity of \; in Spec(m(=Cy,))lym, s0 0 < ar <

dim V1. One can easily check that the only irreducible representations of G

of dimension at most 56 with dimZ > 0 are 1q, Tow,, Tws, Ty tws, and Tou,.

We know that the eigenvalue associated to the trivial representation 1¢ is 0.
Furthermore, dim lei?) = dimVH = 1 by (4.8) and one can check that

Twy +ws

dim VWZIWI =1 and dim ng) = 2. Now, Equation (4.10) becomes

56 = dim Vr,,, ar,,, +dim Vr

wy ey

+ dim V; + dim V.

w1 tws a’ﬂ'ul +wsg 2w3 a’ﬂ'2w3

= 2Tary,, +8an,, +48ar, ., + 350,

with 0 < an,, ,anr,,, < land 0 < ar,,, < 2, which clearly implies

am«q +ws
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that ar,, = ar,, .., =1 and ar,, = an,, =0. Hence
A= AT(V12,2,V3) = AT (r) for 7 € {Musss Tusy tovs }-

By (4.9)), we have that

9 3 .,.2 9 .2 9 3 .2 9 .2
5=t 71T 5=+t 71T
2 10’1 40 "2 2 101 40 "2
{9 10 2 90 2, 142 { 2 ; 2 ’ (4.11)

We now analyze the volume, which is also determined by the spectra. We
have that

vol(Grs (R®), g,) = ™ Py ™ 5P vol(Crs (). g1,1,1))
= ri‘r%rg vol(Grs (Rs)ag(l,l,l))-
Now, since vol(Grs (R®), gr) = vol(Grs (R®), g,,), we obtain rir3r§ =122-8-
3% =27 . 35, Substituting r? = 4r2 in it, we can assert that

ryri? = 2336 = rors = 18. (4.12)
It follows form (4.11]) that

1 110 /9 9 3
r% = 17’% ~ 13 <2 - 407"%> = E(QO - 7‘%) (4.13)

By replacing this expression for r3 in , we get 0 = 7‘22%(20 —7r3)? - 18,
s0 0 = 1r9(20 — r2)2 — 29,

It is a simple calculus exercise to show that the polynomial f(x) := x(20—
:c)2 — 29 has two positive roots: ;1 = 2 and xo = 5.44915345. The second
one gives ry & 5.44915345, and implies 73 &~ —1.817488 < 0, which is
not possible. We conclude that ro = 2, thus r% =3 by and 72 = 12 by
, and the proof is complete. |

4.7. HOMOGENEOUS EINSTEIN METRICS ON Grs (R®). We have that the
Einstein symmetric metric gg,, on %&2)0(3) is v-stable according to Cao
and He [4]. Kerr proved in [7] that there are (up to scaling) two additional
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G-invariant Einstein metrics g;, g2 on Grs (]Rs). The approximate values of
the parameters = = (x1,x2,x3) and r = (r1,72,7r3) (see Remark for their
relation) are as follows:

g9 92
z1 0.902191989660862 0.369813422882157
ro 0.425178535419486 1.10029990844058
T3 1 1
r?  23.5195316013163  9.08843118434199
r% 11.0841152599449  27.0406626186377
r? 10 10

By using the formula for the scalar curvature in 7, p. 168], we obtain that

scal(Grs (R®), g1) & 75.1030942567225,
scal(Grs (R%), g2) = 68.5963932678592.

Dividing by dim Gr3 (R®¥) = 15, we obtain E; & 5.00687295044817 and E; &
4.57309288452394 of g1 and gy respectively.

Although we do not have an explicit expression for the first Laplace eigen-
value of g1 and go, we have that

A1 (Grs (R®), g1) < A™s3(r(g1)) = 9.54978541388250
< 10.0137459008963 = 2F,

A1 (Grs (R®), g2) < A™s3(r(g2)) = 8.81067844449609
< 9.14618576904789 =~ 2F,.

We conclude that the Einstein manifolds (Grs (Rg) ,g1) and (Grs (RS),gg) are
v-unstable, and therefore dynamically unstable.

Remark 4.7. With a similar strategy as in Subsection the authors
obtained that



118 E.A. LAURET, J.S. RODRIGUEZ

. 7 14 ,
A (r) = Br% + 1 3,
7 9 T,
T2wg _ 2 2
M) = gt gg7E + 357
1
— 7\/ 1217} + 817§ + 19615 — 90r?r2 — 92r2r2 — 180r3r2,
7 9 7.
Ay (r) = oorf + oorh + —
30 30 15

+ %\/ 12174 + 817§ + 19615 — 90r?r2 — 92r2r2 — 180r3r2.

The case my,, was particularly hard because dim VWEW3 = 2. Moreover, the
eigenbasis of oy, (—Cy,)|y,r  depends on r. That is, there are eigenvectors
T2w3

in ng) of the Casimir operators ma,, ( — Casg ) and 7r2w3( — Cas&B‘E ), that
are not eigenvectors of Tr,, .

The smallest positive eigenvalue \1(Grs (RS),gT) of the Laplace-Beltrami
operator associated to (Grs (RS),gr) might be equal to

min{ A7 (r), Ay (1), AT () )
To establish it, one has to show that
AT (r) = min{ A7 (r), AT (r), A7 ()}

for every 1 <4 < dim VWH and 7 € G g- The difficult cases are those 7 € G
satisfying dim V. > 1 (e.g. maw,), since it is not easy to determine V¥ and
either the eigenbasis for m(—Cj, )|y» due to the same reason explained in the
previous paragraph.
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