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Abstract: In this paper, we generalize for an arbitrary double vector bundle, some results on linear
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1. INTRODUCTION

The theory of double vector bundles was developped by J. Pradines in
[20] with the concept of maximal atlas of double vector bundle charts of a
surjective map 7 from a set D to a smooth manifold M. A double vector
chart of (D, M,r) is a system ¢ = (U, p, Ey, E1, E2) where U is an open set
of M, E;, i =0,1,2 are Banach spaces and ¢ : 7 1(U) = U x By x Ey x E
is a bijective map such that pri o = 7 |1y (ie., (D) = {z} X By X
E5 x Ey, where D, denotes the fiber over x € U). Two double vector charts
c= (U,¢,Ey, Er, E), ¢ = (U, ¢, Ej, E}, ES) of (D,M,) are said compati-
ble if the transition bijection

Yol (UNU') x By x By x By — (UNU') x B} x By x E}
is of the form
(2,X,Y,2) — (z,u(2) - X, uz(2) - Yiuo(e) - Z + wlz) - (X,Y)), (L1)

where u; : UNU' — L(E;, E}), i =0,1,2 and w: UNU’ — Ly(En, Ey; EY) are
smooth. Definitions of atlas and structure of double vector bundle are similar
to those for vector bundles. The following result gives some basic results for
double vector bundles.
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58 E. KILANTA, A. NTYAM

THEOREM 1.1. ([20]) Let (D, M,n) be a double vector bundle with the
associated maximal atlas Ag.

(a) There is only one structure of smooth manifold on D for which vector
charts of Ag are diffeomorphisms. With respect to this structure, Ay is
an atlas of local trivializations for the fibration (D, M, ).

(b) The sets

(A= H S0—1(U><El><{0EQ}><{OEO})
(Up,E0,E1,E2)€Ag
P: H 7()071(UX{0E1}XE2X{0E0}) (12)
(U,p,Eo,E1,E2)€A
C= 1 ¢ '(Ux{0g)}x {05} x Eo),
(Up,Eo,E1,E2)€Ag

endowed with restrictions qz, q7, ¢z of ™ to A, B, C respectively, are
vector bundles over M.

(c) If we denote qg :D — A, qg : D — B the maps with local expressions
(x,X,Y, Z) — (l‘,X, 0E2,0EO), (:U,X,Y, Z) — ($,0E1,Y,OEO)

on suitable vector charts, hence (D, A, q%), (D, B, qg) are vector bundles
such that
2
D 2

qZDl lqﬁ
A -2 m
is a commutative diagram of vector bundle morphisms.
(d) A, B are vector subbundle of (D, B, q%), (D, A, q%) respectively.
(e) The addition and the scalar multiplication of each vector bundle struc-

ture on D is a vector bundle morphism with respect to the other struc-
ture.

]

The proof of this result is clear by definitions and the gluing theorem for
vector bundles in [7]. In [14] and [I7], an axiomatic for double vector bundles
is presented without indicating how to deduce double vector charts. For this
reason, some structures of vector bundles are given without proof of the local

In the more general sense
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triviality condition for vector bundles (ex. duals of a double vector bundle).
In [6] (see also [10]), the author gives a proof of the existence of local linear
splittings that are equivalent to the existence of double vector bundle charts.

As an application of double vector bundles, let us recall their importance
in the modern formulation of the concept of linear Poisson structures. For
a smooth manifold M, a Poisson structure on M (see [I7]) is a bracket of
smooth functions { , } : C°(M) x C*°(M) — C*°(M) with respect to which
C>°(M) is an R-Lie algebra, and such that for all u,v,w € C*°(M),

{u,vw} = v{u,w} + w{u,v};

the bivector w: M — A2 TM given by m(du, dv) := {u,v} is called the Poisson
bivector and the induced morphism of vector bundles 7 : T*M — TM is
called the Poisson morphism associated to the given Poisson structure. A Lie
algebroid on M is a vector bundle (A, M, q) on which the module I'(A) of
smooth sections of A is endowed with a Lie algebra structure and there is a
base-preserving morphism of vector bundles p : A — T'M, called the anchor

of A, such that:

(a) VS1782 € F(A)a vf € COO(M)a [817f : 82] = f[81752] + (p(51> : f)82~
(b) The induced map p: I'(A) — X(M) is a Lie algebra homomorphism.

Lie groupoids generalize Lie groups (see [I7]) and the infinitesimal counterpart
of a Lie groupoid G = M is a Lie algebroid called the Lie algebroid of G = M.
In [4], it was established that the dual A* — M of the Lie algebroid A — M
of a Lie groupoid G = M is endowed with a Poisson structure such that the
following conditions on brackets of functions hold:

e the bracket of two linear functions is linear;

e the bracket of a linear function and a function constant on fibres is
constant on fibres;

e the bracket of two functions constant on fibres is zero.

This Poisson structure is called the linear Poisson structure on A* asso-
ciated to A. In [B], the equivalence between abstract Lie algebroid structures
and linear Poisson structures on their duals was established. An arbitrary
vector bundle (E, M, q) endowed with a linear Poisson structure is called a
Poisson vector bundle. For a bivector m : E — A*TE, the pair (E, ) is a
Poisson vector bundle if and only if the Poisson morphism =¥ : T*E — TE
is a morphism of double vector bundles over a map a : E* — TM (see [17]).
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This result was used in [I1] to lift linear symplectic forms and linear Poisson
structures.

Product preserving bundle functors on manifolds still called Weil functors
were classified by [8]. Indeed this author has shown in particular that the set of
equivalence classes of such functors are in bijection with the set of equivalence
classes of Weil algebras. These functors were used by many authors (see,
e.g., [3, 19, 12, [I8]) to present some lifts of various geometric objects (smooth
functions, tensor fields, linear connections on manifolds,. .. ).

In the first part of this paper, we give another proof of the existence of local
connections on each double vector bundle by applying Lemmal[f.5] When M is
paracompact, it is well-known that there are global connections on each vector
bundle £ — M (see [, Theorem 17.16.7] or [13]); one can then deduce that
each double vector bundle (D, M, ) admits global connections. Moreover,
when F' denotes a Weil functor, we consider the F-prolongation of a double
vector bundle (Proposition . We finally give new proofs of some known
results (Theorem [6.1} Proposition and Theorem on duals of a double
vector bundle.

In the second part, we recall lifts of linear sections (with respect to a Weil
functor) presented in [9] and study some of their additional properties. In
particular we extend to an arbitrary double vector bundle the characteriza-
tion of linear k-forms on a tangent double vector bundle from [II, 2] [14] (see

Theorem Theorem and Corollary (10.4)).

2. WEIL FUNCTORS

2.1. WEIL ALGEBRA. A Weil algebra is a finite-dimensional quotient
of the algebra of germs &, = C{°(RP,R) (p € N*). For other equivalent
definitions of Weil algebras, one can refer to [13].

Let us denote M,, C &, the ideal of germs vanishing at 0; hence M,, is the
maximal ideal of the local algebra &,.

It is clear that R = £,/M, and the algebra of jets Jj(RP,R) = &,/ M} T
are examples of Weil algebras.

2.2. COVARIANT DESCRIPTION OF A WEIL FUNCTOR T4 : Mf — FM.
We write M f for the category of finite dimensional smooth manifolds and
mappings of class C'°°; furthermore, F M is the category of fibered manifolds
and fibered manifolds morphisms.

Let A= &,/ be a Weil algebra and consider a manifold M. In the set of



ON LIFTS OF LINEAR TENSOR FIELDS 61

© € C°(RP, M) such that ¢(0) = x, define an equivalence relation ~, by:
ezt if and only if - [h]; o [¢Y]o — [Pz o [plo € 1,

for all [h], € C(M,R). The equivalence class of ¢ is denoted by j4¢ and
is called the A—velocity of ¢ at 0; the class j4¢ depends only on the germ
of ¢ at 0. The quotient set is denoted by (7' AM ) and the disjoint union of
(TAM),, x € M by TAM.

The mapping 7 : TAM — M, j4¢ + ¢(0), defines a bundle structure
on TAM and for all smooth map f : M — N, one defines a bundle morphism
TAf: TAM — TAN, (over f) by, TAf(j4¢) = jA(f 0 ).

The correspondence T4 : Mf — FM is a well-defined product-preserving
bundle functor called the Weil functor associated to A ([13]).

When A =€,/ M;‘H , then T is equivalent to the bundle functor T, of
(p,r)-velocities and when A is the algebra of dual numbers D = £/ M? | then
T4 =T is the tangent functor.

2.3. THE CANONICAL FLOW NATURAL EQUIVALENCE K : TACT — ToTA.
Given two Weil functors T4, T8 with A = &,/I, B = &,/J; let M be a
manifold. For any ¢ = j4p € TATBM, there is a differentiable mapping
® : RPxR? — M such that p(z) = j8®., in a neighbourhood of 0 € RP (see
[3] for bundle functors of (p, 1)-velocities or [I3] for Weil functors). By this
result, one can define a natural equivalence

KAB TATE —T1BoTA

by : (kaB)m(C) = jpn, where n: RT — TAM, t jA®t. In particular, for
TB =T, we obtain the canonical flow natural equivalence

k:TA0T —ToTA (2.1)

associated to the bundle functor T4, i.e., the following diagram commutes for
every manifold M and every vector field X on M:

TANM  TMES prAps

A KM
T Xl /‘ l“TAM
TATM —— TAM

TA7T1\/[
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with Fas X the vector field on T4M given by:
0
FuX(u) = aTA(sz( )(u)|i=0 € TLTAM,
and FIX : R x M D Qx — M the global flow of X. X¢ := Fp X is called
the complete lift of X to TAM and F : T ~» TT* is called the flow operator

of T4 (see [13]).

Remarks 2.1. (a) Given a product preserving bundle functor F, A" =
F(R) is a real associative, commutative, unital and finite dimensional algebra.
The fiber N = Fy(R) over 0 is the ideal of nilpotent elements of A and
we have AT = R.1 ® N; moreover, there is a canonical natural equivalence
©: F — TA" (see [13]). The algebra A" is called the Weil algebra of F.

(b) Weil functors T4 : Mf — FM preserve immersions, embeddings,
submersions, surjective submersions, transversal maps,...In particular let
(Y, M, q) a fibered manifold and a smooth map f : N — M; the canonical
isomorphism

(T4pr1, Tpra) : TH(N (1Y) — TAN x T4Y
induces an isomorphism of fibered manifolds
A A A
TAN X5, Y) — TN X(paprag TY
over TAN, which can be written T4(f*(Y)) = (T4 f)*(T4Y).
(c) For a smooth manifold M, one can consider the vector bundles
(TATM, TAM,T*7y)  and  (TTAM, TAM, wpay);
let Oppr @ M — TM be the zero vector field; hence the zero section of
TATM — TAM is just
A . A A . A A

TOppr) : TM — TOTM and Ky 2 TOTM — TTM

is an isomorphism of vector bundles over idpa ;.

(d) For a vector bundle (E, M, q), (TAE,TAM,T4q) is a vector bundle
with the addition T4(+) : TAE Xpay TAE — TAE and the multiplication
(t,e) = T4(mf)(€), where m¥ denotes the multiplication on E. If (g,g) is

a morphism of vector bundles, then (T Ag, TAQ) is also a morphism of vector
bundles.

For the sake of simplicity, in the rest of the document F :Mf — FM is
a product preserving bundle functor with the associated Weil algebra A" .
We will often write DVB for “double vector bundle”.
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3. AXIOMATIC OF DOUBLE VECTOR BUNDLES

3.1. DOUBLE VECTOR BUNDLES.

DEFINITION 3.1. ([I7]) A double vector bundle is a system (D; A, B; M)
of four vector bundle structures

ap
D —— B
qgl qu (3.1)
A B

where D is a vector bundle on bases A and B, which are themselves vector
bundles on M, such that each of the four structure maps of each vector bun-
dle structure on D (projection, addition, scalar multiplication and the zero
section) is a vector bundle morphism with respect to the other structure.

Let (D; A,B; M) be a double vector bundle.

The Vector bundle D —A> A is called the vertical bundle structure on D
and D 3 B is called the horizontal bundle structure on D.

D D
NoraTion 3.2. ([I7]) Vector bundles D 4 4 and D & B are usually
denoted Dy and Dp respectively; the zero sections of vector bundles A, B,
DA, DB are respectlvely denoted 04, 05, OA OB the additions and scalar

multiplications of D —A) Aand D 3 B are denoted +, A and +, i respectively.
A B
We denote D, the fiber of D4 over a € A and Dy, the fiber of Dg over b € B.

Remarks 3.3. (1) We have D, N Dy, # ) if and only if g4(a) = ¢p(b) and
for din D,N Dy, DoN Dy = d+ ker(qg)a =d+ ker(qg)b is an affine subspace
A B
of both D, and D;. Hence D, N Dy is a vector subspace of both D, and Dy
if and only if ker(qB)a = ker(q), i.e., a = 04(z), b = 0B(z), i.e., the vector

bundles D, and Dp coincide on the set C = U Doa(z) N Don(z).-
zeM

(2) When we say that the addition + : 5A &) EA — 15,4 is a morphism
A

of vector bundles over the addition B & B — B we implicitly admit that
Dy® Dy — B® B is a vector bundle. In fact Dy @ D4 is a subbundle of the
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restriction L := 53 X 53 |Bep since (qﬁ, gp) and (qg, q4) are morphisms of
vector bundles. Indeed D4 ® D4 C L and for all (b,V') in B, ® B,,

ﬁA@ﬁAmL(byb/) = ( U Da X Da> me X Db’
aGAz

= [(d5), * (¢8),] " (Aarxa,)

is a vector subspace of Ly = Dy X Dy, where A g, x4, denotes the diagonal
of A, x A,. Moreover, (qg X qﬁ)) (L) = A® A and the induced map ¢§ ®pq7 :
L — A @ A is a fibrewise surjective morphism of vector bundles over the
projection ¢paep, hence Da® Dy = [qg Dp qg]fl (Aaxa) is a subbundle of
L, since Ajgxa C A® A is a subbundle.

(3) Using the fact that a continuous map 6 : V. — W between two real
vector spaces is linear if and only if O(v+v") = 6(v) +60(0'), for all v,v'in V', a
commutative diagram of four vector bundle structures is a double vector
bundle if and only if we have

qR(d+d) =R (d) + ¢R(d), for all d,d" in Dp, (3.2)
B
D N _ D / /.
QB(dj;d)—QB(d)"i'QB(d): for all d,d" in Da, (3.3)
d d d dy) = (d d d dyg), 3.4
(1J£ 2)JBF(34Aj 1) (1;; 3)42(2; 1) (3.4)

for all (di,ds), (ds,ds) in Dy @ Ds such that ¢B(d1) = ¢B(ds) and
D _ D
qp(d2) = qp(ds).

ExXAMPLES 3.4. (1) Given three vector bundles A, B, C over the same
base M, hence (A® B & C;A,B; M) is a DVB. Indeed let us consider the
vector bundles A@ B®C — A as ¢§(B®C) and A B&C — B as
q5(A @ C); these data satisfy obviously , and . In particular,
A®B=2A®B®0%M)isaDVB (A® BaC; A, B; M) called a decomposed
double vector bundle.

(2) Let (D;A,B; M) beaDVB and U C M anon empty open set. There
is a structure of DVB on Dy = (ga o ¢§)"1(U) = (¢p o ¢§)~1(U). Indeed
let Dy — ¢, (U), Dy — q5"(U) and ¢, (U) — U, q5'(U) — U be the

restrictions D4 |q21(U), Dp ‘qgl(U) and A |y, B |u respectively; hence the
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induced commutative diagram

a5
DU e B|U

i

A‘U——q—A——) M

of vector bundle structures obviously satisfies (3.2)), (3.3) and (3.4). This DVB
denoted D |y is called the restriction of D to U.

3.2. CORE AND EXACT SEQUENCES. Let us recall that given a morphism
of vector bundles f : E — E’ over f : M — M’, one can associate a morphism
of vector bundles f' : E — f*E' over M ([17]) defined by f'(e) = (qr(e), f(e)).
One has ker f' = ker f and f' is fibrewise surjective if f is fibrewise surjective.

Let (D; A, B; M) be a double vector bundle.

In Remark we noticed that the vector bundles D 4 and 53 coincide
on the set C':= |J Dga(y) N Dys(y), intersection of kernels ker ¢} and ker ¢&.

zeM
For x in M,
Cy := Dya(yy N Doy = ker(qp )oa) = ker(qX)os o)

is a vector subspace of both Dya .y and Dys ,; but 04004(z) = 05008 (2) and
c+cd =c+d by |D hence the induced structures of vector space on C,
A B

coincide. Now, C' = ker(¢B) loacary= ker(q%) loB(ar) is & vector bundle over
04(M) and 0B(M) diffeomorphic to M, hence there are two structures of
vector bundle on C' over M with the same projection go := ¢4 o qE lo=
qp © ¢ |c and the same structure of vector space on each fibre, so (C, M, q¢)
is a vector bundle called the core of (D; A, B; M).

Moreover, the maps

TA:qyC — l~?,4 8 :qpC — 53
(a,¢) — 04a)+c and (bye) — 0B(b) j‘— c
B

are fibrewise injective morphisms of vector bundles (such that Im 74 = ker qg ,
Im 75 = ker qu ) called translations over A and B respectively. Hence there
are short exact sequences of morphisms of vector bundles

~  (¢B)

0— ¢4C —2— Dy @B —0, (3.5)
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0 — qC —2 Dy L5 240, (3.6)

called core sequences over A and B respectively.

Remarks 3.5. (1) It is clear by (3.4) that
d+Tala,c) =d+ 7(b,c), 3.7
a(a,c) B(b,¢) (3.7)

for all (a,b,c) € A® B® C and d € D, N Dy,

(2) Given a smooth section v € I'(C), the image of ¢y € I'(¢},C) by
74 is a section of ker ¢§ — A denoted 74 and called in [I7] the core section

corresponding to v with respect to (3.5). Clearly, v4(a) = 74(a,v(ga(a)))
and since 74 induces an isomorphism of vector bundles ¢ C' — ker qg over A,
for a local frame (v;) of C, (77!) is a local frame of ker ¢5.

3.3. MORPHISMS OF DOUBLE VECTOR BUNDLES. Let (D; A, B; M) and
(D'; A’, B'; M) be two double vector bundles with cores C' and C".

DEFINITION 3.6. [I7] A morphism from (D; A, B; M) to (D'; A’, B'; M)
is a system (¢; ¢4, ¢B;pnm) of smooth maps ¢ : D — D', 4 : A — A

¢p: B — B', oy : M — M such that (¢, 04), (¢, ¢B), (94, 0M), (B, oM)
are morphisms of vector bundles. In fact,

pa=qy opol? w5 =qp opo0”,
o = qpr o pp o008 =g o0ps00?
:qB/oqg,,oapoﬁBoOB:qA/oqE,,ogooﬁAoOA.

If M = M’ and ¢y = idyy, ¢ is said over M;if A= A" and o4 = ids, we
say that ¢ preserves A ;if A= A', B= B and ¢4 = ida, pp = idg, we say
¢ preserves the side bundles.

Remark 3.7. Let (v;04,¢B,;¢m) be a morphism from (D; A, B; M) to
(D'; A', B'; M'). Tt is clear that ¢(ker ¢§) C ker qE,’ and p(ker ¢B) C ker qg,';
in particular, p(C) C C’ and the induced map p¢ : C' — C’ is a morphism of
vector bundles over ¢y, called the core morphism of (¢; 04, ©B; YN )-

4. LINEAR SECTIONS, SPLITTINGS, VERTICAL AND
HORIZONTAL LIFTS ([14], 17, [6])

Let (D; A, B; M) be a double vector bundle with core C.
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4.1. LINEAR SECTIONS AND SPLITTINGS.

DEFINITION 4.1. A linear section of D with respect to its vertical vector
bundle structure D — A is a pair (o,0) of sections where o € I'4(D),
o € I'(B) and o is a morphism of vector bundles

A —"5D
qu lqg : (4.1)
M —=2+ B

The set of linear sections with respect to D — A is denoted I'{"(D); this
is a C°°(M)-module where the multiplication is given by f -0 := foqa - 0.

One can also define in the same way a linear section of D with respect to
its horizontal vector bundle structure D — B.

DEFINITION 4.2. A linear splitting of the exact sequence is a right
inverse of the surjective morphism of vector bundles (qB) Dy —q AB ie., a
morphism of vector bundles ¢ : ¢ B — D4 over A such that (qB) o) = idg B.
One can define in the same way a linear splitting of the exact sequence 1'

A linear splitting (or a linear connection) of D is a linear splitting

¥ :A® B — D of (3.5) and (3.6).

Remark 4.3. Each of the exact sequences (3.5 and (3.6) admits local lin-
ear splittings. Indeed let U be an open paracompact set of M over which A and
B are trivializable; since qEI(U ) and ¢ L(U) are paracompact manifolds, all

subbundles of vector bundles D4 , o) and Dp , 1 ) admit complements

(see [7, 16.17.3]), i.e., there are subbundles K C DA | <1 ,LC Dgp , -1
such that

DA ’q;l(U): kel"qg ‘qzl(U) @K, DB ‘ —1 = kerqA | 71 @) DL .

Hence

w QAB|*1 %K‘—)DA,

\ ((@R)]e) ! ~
N qpA |, 1) ——— L= D

are respectively local splittings of (3.5)) and (3.6)).
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DEFINITION 4.4. When 71 : ¢ggA — Dp is a linear splitting of , the
horizontal lift (with respect to 1) of a section 8 € I'(B) is the linear section
B € T4™(D) defined by B(a) = n(8(ga(a), a).

When o : ¢34 B — Dy is a linear splitting of , the vertical lift (with
respect to 1) of a section o € I'(A) is the linear section o € T'4"(D) defined
by a(b) = ¢(algp(b)), ).

LEMMA 4.5. For a linear function h : A — R and a linear section
a € T%"(D), the map aj, : A® B — D, given by aj(a,b) = h(a) f a(b),

is a morphism of double vector bundles (ap;h - o qa,idp;idy).
PRrROPOSITION 4.6. ([6]) (D; A, B; M) admits local linear splittings.

Proof. Let v : qgl(U) &) qgl(U) — Dy a local linear splitting of ;
consider (a;)1<i<n, alocal frame of A on U and «; : qgl(U) — EA, 1<i<m
their associated horizontal lifts. Let h; : qZI(U) — R, 1 <14 < nq be the linear
functions given by hi(a) = (a((ga(a)), a), where (')1<i<n, is the dual frame
of (a;)1<i<n,; hence (by the previous lemma) the map Y= dophi 5 is a

ni
morphism of double vector bundles over Zhig oqa = idq:(U) and id

—1
U)»
= dB ( )

i.e., a local linear splitting of D. |

Remark 4.7. Each linear splitting 0 : A@® B — D of (D;A,B; M) is
equivalent to an isomorphism of double vector bundles ¢ : D — A B C
over A and B such that ¢¢o = idc. Indeed the map

0:ApBeoC — D
(a,b,¢) —— o(a,b) —l‘— Ta(a,c) = o(a,b) +15(b,C),
B

is an isomorphism of DVB over A and B such that 8¢ = idc, hence ¢ := 67!
is an isomorphism of DVB over A and B such that ¢¢c = ido. Conversely
given such an isomorphism of double vector bundles, a linear splitting
is defined by o(a,b) = ¢ (a,b,0%z)). Such an isomorphism is called a
decomposition of D.

Given a local decomposition ¢ : D |y — A® B @ C |y of D such that
A, B,C are trivializable over U, one can associate a double vector chart
v = (pa ® ¢ ® @c) o ¢ of D, where 4, pp,pc are local trivializations
of A,B,C and

AP OB D PC  Uappac(U) — U x R™ x R™ x R™
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is the isomorphism of DVB .

Conversely a double vector chart ¢ : D |[gp— U x R™ x R" x R™ is
an isomorphism of DVB over local trivializations ¢4, ¢p; if ¢c is its core
morphism, hence ¢ := (gozl @ (p]_31 < cpal) o ¢ is a local decomposition of
D. This shows (by the previous result) that the structure of D is entirely
described by local decompositions.

LEMMA 4.8. Let ) # U C M be a domain of chart over which A and B
are trivializable, f : U — R a smooth function with a compact support and a
local linear splitting 1) : A® B |y— D of D. Hence the map 1) : A® B — D,
given by

vi=foqaes ¥ on quep(U)
Y= 0B o po on A@B\qzéB(U),

is a morphism of DVB over fids and idg, where f € C*°(M) is equal to f
on U and 0 on M\U.

Proof. 1t is sufficient to show that 1; is smooth. Indeed 1; is smooth
on qZéB(U) aEd AP B\qZéB(U); moreover for (a,b) in qZé}B(U)\qZéB(U),
qagpp(a,b) € U\U C M\ Supp(f) ="V, hence qZéB(V) is an open neighbor-
hood of (a,b) such that v ’qzélBB(V): 08 0 py ’qZé}B(Vy so 1 is smooth. 1

This is sufficient to generalize [7, Theorem 17.16.7].

THEOREM 4.9. ([20]) If M is paracompact, (D; A, B; M) admits (global)
connections. In particular (D; A, B; M) admits global decompositions.

Proof. Let (U;)ier be a locally finite atlas of M such that A and B are
trivializable over each U;. Let ¢; : A@® B |y,— D, i € I be a local linear
splitting (Proposition and let (f;)ier be a partition of unity subordinate
to this open cover. By the previous lemma, the maps given by

{ﬂ}i = fioqaen - Vi on qzsp(Us), ,
-~ - B iel
i =0 opy on A& B\qugp(Uh),

are morphisms of DVB over f;ids and idg. Hence J =>5 1@ is a linear
splitting of D. 1
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4.2. LOCAL COORDINATE SYSTEMS. Let ¢: D |U - A& B®C | U be
a local decomposition of a double vector bundle (D; A, B; M) where A, B, C
are trivializable over U. For local frames (Qk)lgkgnl’ (éj)lgjgng’ (lz)lglgno
of A, B, C on U, it is clear by definitions of horizontal lifts, core sections and

the previous remark that

a(b) = (%(QB b)),b,0% (g5 (b)), 1<k<m,
() ==~ (b) = ¢~ 1(0 ),b,7,(a5(b))), 1<1<n,
Bj(a) = ( B,(aa(a)), OC(QA( ) 1< j<ny,
((a) == (a) = 67 (2,05 (ga(a)),7,(g4(a))), 1 <1<,

define local frames
(Oék,")/l/) and (/6]771) (42)

of 53 and EA respectively.  Moreover, considering local trivializations
©A, ¥B, pc associated to (ou)i<k<nis (Bj)i<j<ns, (V)1<i<ng, One can asso-
ciate by the previous remark a double vector chart (U, ¢, R™ ,R"2 R") such
that

ﬁj(a) = 30_1(90%1(@)76?’0)7 ’Yl( ) ¥ 1(9014(@)707 6?), (4 3)
ar(b) = ¢~ (2, ¢4, (9B) ,(0),0), () = ¢~ (2,0, (vB)2(D), &),
where z = gp(b) and (ek)1<k:<n1 (632)1§j§n2’ (e?)lglgno are bases of R™,

R™2 R™ respectively.

When U is a domain of chart (U,u), there are adapted local coordinate
systems (2, 2¥), (27, 7“7) of A, B on ¢;*(U), ¢5'(U) and an adapted local
coordinate system (z¢,a* b7, ¢') of D — M on 71 (U) such that

xi:uiow\ﬂ_l(m, 1<i<m,
ak =zFo QE ‘W*l(U)7 1<k <ny, (44)
¥ =17 0qp |-, 1 <j < ng,

and functions ¢,

1 < | < ng are linear on fibers of both 5A|q;1
and 53|q§1(U)

()
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5. EXAMPLES OF DOUBLE VECTOR BUNDLES

5.1. THE DECOMPOSED DOUBLE VECTOR BUNDLE. Let A, B, C be three
structures of vector bundles over the same base M. The decomposed double
vector bundle also called trivial DVB in [17],

A®BopC -2 B

n| &

M 2. B

associated to A, B,C is already defined and denoted {A, B;C} in [20]. The
double vector chart corresponding to vector charts (U, ¢4, R™), (U, 5, R™?),
(U, oc,R™) of A, B,C is the map

—1 pADYBDPYC ni no ng
U) —=—/—"=
Uazpac(U) UxR"™ xR" xR

5.1
Az ® B ®Cy 3 (a7 b, C) — (mv (SOA)m(a)v (@B)m(b)7 (‘PC)m(C))' ( )
Remark 5.1. One can consider the following particular cases: A = 04(M)
and B = 0B(M), C = 0°(M) isomorphic to B @ C and A respectively.

Since each real vector space V is a vector bundle over a one point manifold,
hence V = V@{0}&{0} is a double vector bundle and a linear map ¢ : V.— W
a is morphism of double vector bundles.

5.2. DOUBLE VECTOR BUNDLES ker qg, ker qg, C'. Given a double vec-
tor bundle (D; A, B; M) with core C, hence ker qu , ker qg and C' are double
vector bundles respectively isomorphic to {04(M), B; C}, {A,08(M); C} and
{04(M),08(M); C’}. The (global) linear splittings associated to these double
vector bundles are respectively 6’4, 08,04 004 =08 0 05.

5.3. THE TANGENT DOUBLE VECTOR BUNDLE OF A VECTOR BUNDLE.
Let (E, M, q) be a vector bundle. Consider a chart ¢ = (U, u, m) of M such
that E is trivializable over U and let ¢ : ¢~1(U) — u(U) x R" be a fibered
chart of E. Ty is an isomorphism of vector bundles over T'u and ¢; moreover if
Tu@)xre - T(u(U)xR™) — u(U) xR" x R™ xR™ is the canonical isomorphism,
hence

@:Z(Uil Xidgn Xidgm Xian)OTu(U)X[Rn oT'p

UxR"xR™x R"

Tq ' (U)
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is a double vector chart of (T'E, M, ), where m = mpy 0 Tq = gong. Indeed if

<I>1:=(u;1 Xidgn X idgm X’ian)OTu(Ul)X]RnOTSOI

Tq ' (Uy) Up x R" x R™ x R"

is another double vector chart with () # Tq~*(U)NTq~ (Uy) = Tq~ (U NUy)
and
prop liu(UNUy) xR" — w(UNU;) xR
(z,k) — (u1ou™1(2),a(z) k)

with a : w(U N Uy) = GI(R™) a smooth map, hence ®; o ®~1 is the map

UNUi xR"xR™xR* — UNU; xR® x R™ x R"
($,k§,h,t) — (CL‘,O[(CL‘) ’ k,ﬂ(ﬁ) : han(‘r) -t —|—U.)({L‘) ' (k? h))7

where o = = aou : UNU; = GI(R™), B = D(uiou )ou : UNU; — GI(R™)
and w: UNU; — L2(R",R™; R™), given by w(x) - (k,h) = (Da(u(zx)) - h) - k.

These charts constitute an atlas for a structure of double vector bundle

TE 1 M
ﬂEl lﬁM . (5.2)
E 2> M
Its core |J Tym(y) By is isomorphic to E.

xeM

The local coordinate system (4.4) of (T'E; E,TM; M) associated to (z, y*)
and (z°, a:]) is exactly the usual local coordinate system (z?,y", :c], v ).

5.4. THE F-PROLONGATION OF A DOUBLE VECTOR BUNDLE. Consider
a product preserving bundle functor. F': Mf — FM.

PROPOSITION 5.2. For a double vector bundle (D; A, B; M),

D
FD %, pp
Fqgl quB (53)
FA 24, pyp

is a double vector bundle.
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Proof. Indeed if (U,o,R™ /R™ R™) is a double vector chart of
(D; A, B; M) then (FU,Fp, FR™ FR"™ FR™) is a double vector chart of
(FD;FA,FB;FM); to see it consider another double vector chart
(U, ¢',R™ R"2 R"™) of (D; A, B; M) such that

¢ o N, X,Y, Z) = (z,ui(x) - X, ua(x) - Y,up(x) - Z + w(x)(X,Y)),

with w; : U — GL(R™), i = 0,1,2 and w : U — L2(R™,R"?;R") smooth
maps; hence F¢' o Fo~1(Z,X,Y, Z) is equal to

(@, jrm (Fur(3)) - X, jrns (Fua()) - Y, jrno (Fug (%)) - Z + 012(Fw(@))(X,Y)),

where jgn; : FGL(RY) — GL(FR?), i = 0,1,2 are canonical representations
and (19 : FLy(R™,R";R™) — Lo(FR™, FR™; FR™), the canonical map.
This proves that double vector charts (FU, Fo, FR™  FR™ FR™) constitute
an atlas for a structure of double vector bundle on FD. |}

DEFINITION 5.3. We call it the F-prolongation of (D; A, B; M).

6. DUALITY ON DOUBLE VECTOR BUNDLES

Let us recall that given a morphism of vector bundles ¢ : E — E’ over
a diffeomorphism ¢ : M — M’ its transpose morphism is the morphism of

vector bundles ¢! : E™* — E* over the diffeomorphism f‘l : M" — M, defined

on fibres by ('), 1= [gow_l(x/)]t.

6.1. DUALS OF A DOUBLE VECTOR BUNDLE. Let (D; A, B; M) be a dou-
ble vector bundle. Let (D*A, A, (qf‘))*) denotes the dual bundle of (D, A, qﬁ)).
The transpose of the exact sequence (3.5)) is the exact sequence

[(aB)]

t
T t
0 ¢, B 2 DA™ ot o (6.1)

of morphisms of vector bundles over A; the composition of vector bundles

morphisms
(Ta)t

D*A o 2 o

(Q,ﬁ’)*l l lqc*

L SN L RN

is a surjective submersion qéfi‘ :D*A — C*.
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THEOREM 6.1. ([I7]) The commutative diagram of surjective submer-
sions

*A
DA 2, o
@ | [ (6.2)
A 2 M
is a double vector bundle (D*A; A, C*; M) with (6.1]) as a core sequence.
Proof. Let us denote as n* : D*A — M the surjective submersion

gao (qf;)* =qc+o qg‘i‘. Consider a double vector chart (U, ¢, R™ R"2 R"0) of
(D; A, B; M) over local trivializations

@A:qzl(U)—>U><]R"1, ch:qjgl(U)—>U><]R"2

of A, B; the transpose morphism (p*, ¢04) := ([0, 0a) of (o1, (pgl) is an
isomorphism of vector bundles given by
o*: (m*)THU) — U x R™ x (R"2)* x (R™)*
Dz9q) — (@A(a%@090(;1(‘70)7(1)090;1(07'))'

If (U, ¢/ ,R™ R"2, R™) is another double vector chart of (D; A, B; M) such
that

¢ o N, X,Y,Z) = (ac,ul(:v) - X, ua(z) - Yup(z) - Z + w(x)(X, Y)),

with w; : U — GL(R™), i = 0,1,2 and w : U — Lo(R™,R"2;R™) smooth
maps, hence ¢'* o (p*)~!(z, X,Y*, Z*) is equal to

(2, ur(2) ™" X [uz ()] (V) + [w(@) (X, )] (Z7), [uo(2)]" - Z7). (6.3)

So double vector charts (U,¢* R™, (R")* (R"2)*) constitute an atlas
for a structure of double vector bundle on D*A with left and right sides
D \x * A
DAY 4 and DA K vy
DEFINITION 6.2. [I7] The double vector bundle (/6.2) is called the vertical
dual (or dual over A) of (3.1). Its core is obviously isomorphic to the dual
B* of B.

Remark 6.3. The transpose

* A% [(qf\))!]t * (rB)" * vk
0— ¢gpA* ——— D*B —— ¢5C* — 0 (6.4)
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of the core sequence (3.6)) allows in the same way to consider the horizontal
dual

I
qgﬁl lQB (6.5)

cr 2y M
of (3.1]) with the core isomorphic to A*.

Hence the following properties are clear.

ProposITION 6.4. ([17]) Let 6 € C*.
(i) For all ®, ®' in (D*A)y with (¢§)*(®) = a, (¢§)*(®') = a’ we have:

(@ + ®)(d") = B(d) + @'(d). (6.6)

where d" € Dy yq1, d € Dy, d € Dy and d’ = d; d.
(ii) For all ® in (D*A) with (¢7)*(®) = a, we have:

(s o D) (s i d) = s®(d), (6.7)

for all s € R.
Proof. Let us consider a double vector chart (U,p,R™ R"™ R") of
(D; A, B; M) such that x := g¢=(0) € U.

(i) For all ®, ® in (D*A)y with (¢§)*(®) = a, (¢7)*(®') = @’ and
d" € Dyyoy d € Dy, d € Dy such that d’ = d+ d', let d = o~ 1(2, X,Y, Z),
B

d = QO_l(:L‘,X/,Y, Z/), b = (@*)—1($’X’ Y*,Z*), P = (90*)_1($,X/,Y/*,Z*);
since ® + @ = (p*) He*(®) + ¢*(®')) by definition, we have
% (R™0)*

o ér ' = (p*) Y a, X + X', Y* +Y"* Z*), hence
@g_ (b/(d//) — <}/,Y* +Y/*> + <Z+Z/,Z*>
=Y, Y)+(Z,Z") + (YY) + (Z,Z*) = ®(d) + D'(d).

(ii) Similarly, since s G P = (%)t (s <p*(<1>)>, we have

(Rm0)"

S G d = (") Hx,8X,sY*, Z%)
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hence

(s ;. ®)s - d) = (VisY™) 4 (2, 2%) = s((V,Y") + (2, 27)) = 50(d). |

Remark 6.5. The dual frame (37, 4') of the local frame (3;, ;) of 5A|q;1(U)
defined by 1D is clearly the local frame of D*A | a1 (0) induced by the double
vector chart (U, ¢*,R™ (R™)* (R™2)¥), i.e.,

{Bj(a) - ((p*)il((PA(G’)v 62)* O)a 1 <j<ngy,

)*), 1<l <ng. (6'8)

Likewise, we have,

qi (B) = 0c; . and (') =1/(ga(0), 1<) <na, 1<1<mg. (6.9)

a)
In the case of the vertical dual

T"E "2 p*

W e

E £, Mg

of (5.2), we have for x in E,,

(6.10)

6.2. CANONICAL PAIRING. We give a new proof of the following result.

THEOREM 6.6. ([14], [16]) There is a natural duality between D*A and
D*B over C* given by

|,V |=(d,®) 4, — (d,¥) 5, (6.11)
where 7 (d) = (¢7)*(®) and qB(d) = (¢8)"(¥).

Proof. Let 6 € C ; consider a double vector chart (U, ¢, R™ R"2 R™) of
(D; A, B; M) such that x € U. For all (&, V) € (D*A)y © (D*B)gy, let:

®=(p") &, X,Y*,Z*)  and = U=(") (2, X"Y,Z%)
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with 0 = 5 'z, Z*); for all d = o~} (2, X,Y, Z) € Dgny<@) N Digpys (v we
have
O(d) =Y, Y*)+(Z,Z%) and U(d)=(X,X")+(Z,Z%),
let us show that the real number
D(d) — W(d) == (¥,Y") - (X, X*)

does not depends on (U, o, R™ R"2 R™). Indeed let (U’, ', R" R"2 R"0)
be another double vector chart such that z € U’ and

¢ o Nz, X,Y,Z) = (z,u1(z) - X, ug(z) - Y,uo(z) - Z 4+ w(z)(X,Y)),

with uy : UNU’ — GL(R™), us : UNU’ — GL(R™), ug : UNU’ — GL(R™),
w:UNU — Lo(R™,R"2;R™) of class C°°, hence

P = (@l*)_l(l’,’,X’,Y’*,Z’*) and U = (@l*)_l(lﬁ,X’*,Y’,Z’*)

imply
X =u(z)" - X'
X* = [u(@)]" - X"+ [w(@)(, V)] (27)
Y = ug(z)~t- Y’
Y* = [uz(2)] - Y™ 4 [w(x)(X, )] (2)
and

{ <K Y*> = <Y/7Y/*> + <w(a:)(X, Y)7Z/*>
(X, X7) = (X', X") + (w(@)(X,Y), Z2"7),

so (Y, Y*)— (X, X*) = (Y, V™) — (X', X"*) ie., (6.11)) is well-defined. Finally,
since the map

R70 > (R™2)7 > (R™0)" x R™  — R, ((X,Y7),
(X*,Y)) s (YY" — (X, X*)

is bilinear and nondegenerate, (6.11]) defines a pairing. I

7. SOME NATURAL MORPHISMS OF DOUBLE VECTOR BUNDLES

In this section, we generalize for DVB some natural morphisms of vector
bundles attached to a Weil functor F': M f — FM (see [13] or [9]).
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7.1. CANONICAL ISOMORPHISMS kg : FTE — TFE. Let us consider
the canonical flow natural equivalence (2.1) x : FT — TF associated to F.
For a vector bundle (E, M, q), one can consider the F-prolongation

rre 259 pry

Fire) | | P

FE -1 FMm
of (TE;E, TM;M) and the tangent double vector bundle

rre 25 rEy

TFE l lWFIM

FE X FM
of (FE,FM, Fq). It is clear to see that

kp: FI'E — TFFE (7.1)

is a double vector bundle isomorphism (kg;idrg, kKar;idrar).

7.2. NATURAL TRANSFORMATIONS Q(a) : F — F.  For a vector bundle
(E, M, q), the fibered multiplication pug : R x E — E is a morphism of vector
bundles over the projection R x M — M; hence Fugp : A x FE — FE
is a morphism of vector bundles over the projection A¥ x FM — FM, i.e.,
the partial maps Fug(a,-) : FE — FE (a € AY) are morphisms of vector
bundles over idpps. One deduces (for a in AF ) a natural transformation

Qa): F — F (7.2)
by Q(a)g := Fug(a,-) that for all s,¢ € R and a,b € AL satisfies

Q(lAF) =idrg ,
Q(sa +tb) = sQ(a) + tQ(b), (7.3)

Q(ab) = Q(a) o Q(b) .
Now, let (D; A, B; M) be a double vector bundle. Hence for all a in AF,
@(a)ﬁA : FD — FD is a morphism of double vector bundles (@(a)ﬁA; idpa,

Q(a)p;idp M), since the fibered multiplication R x D4 — D4 is a morphism
of vector bundles over the projection R x A — A and the multiplication on

B. Similarly, for all a in A", Q(a) by FD = FDisa morphism of double

vector bundles (@(a)ﬁB vidpp, Q(a)a; z'dFM).
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7.3. NATURAL TRANSFORMATIONS Q(a) : TF — TF. For all smooth
manifold M, let Q(a)n = ka0 Q(a)ras o k' one defines in this way a
natural transformation

Qa): TF — TF (7.4)

between Weil functors satisfying ((7.3)).
Finally, for a vector bundle (FE, M, q), urg : Rx TE — TFE is a morphism
of double vector bundles from

R x TE “2XT% » o pag TE L%y TM
id]RXﬂ'EJ/ \[id}]@Xﬂ'[w tO ﬂ—El l’n’M
Rx E -BX4 Ry E 9% M

over the projection R x £ — E and p,,, : R x TM — TM. So, the maps
Q(a)p : TFE — TFE, (a € AY) (7.5)

become morphisms of double vector bundles (Q(a)g;idrg, Q(a)n;idpar), as
composition of morphisms of double vector bundles.

8. ON LIFTS OF LINEAR FUNCTIONS AND SECTIONS

Let us recall these tools developed in [9] [17] (and in [19] with a product
preserving gauge bundle functor on vector bundles).

8.1. LIFTS OF LINEAR FUNCTIONS. Let (E, M, q) be a vector bundle and
{pt} a one point manifold.
A smooth function h : E — R is linear on fibres (or a linear function) if

E ", R

'] !

M —— {pt}

is a morphism of vector bundles over a constant map.

One denotes by C7% (E,R) the set all smooth linear functions on £. This is
a module over C*°(M, R) isomorphic to the module I'(E*) of smooth sections
of the dual of F, since the map ¢ : I'(E*) — Cp5 (E,R) given by ({5), = o(z),
is an isomorphism of modules.
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Each h in C75,(E,R) is a morphism of double vector bundles, hence for
a linear function \ : AF — R, ™) := X\ o Fh, belongs to C° (FE,R) (as

lin
composition of morphisms of double vector bundles) and is called the A-Iift
of h to FE.

8.2. LIFTS OF LINEAR SECTIONS. Let (D;A, B; M) be a double vector
bundle. For a linear section

A -2 D
QAl lqg
M —%24 B

of the vertical bundle structure, its local expression in a local frame (3;,7;)

of Dy (see subsection ) is
| ) no j ' no l ( 1)
g, (U) Zj_—1* 1AP] Zl_—1 R ’

where o =% ngj and o' : qZI(U) — R, 1 <k < ng, linear functions.
Moreover for a € A, let

0@ :=Q(a)po Fo, ol = @(a)f)A oFo. (8.2)
PROPOSITION 8.1. (0(®, 5(®) is a smooth linear section of FD — FA.
Proof. 0@ is a section of FD — FA since Q(a) B, is a morphism of

vector bundles over idp4. Moreover (% is the composition of two morphisms
of vector bundles, namely

ra —f7, Fp Fp 292 pp
Faa | |rapy and e | |Fap
FM 2. FB rp QWs pp

hence (@ is a linear section over ¢(@. |

DEFINITION 8.2. (6(%), (@) is called the a-lift of (0,0,) to FA.
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One may define in the same way the a-lift (5(%), ﬁ(“)) of a linear section

B ., p

o s

M L A
of the horizontal bundle structure D — B.

8.3. APPLICATION TO LIFTS OF LINEAR VECTOR FIELDS. In this subsec-
tion, we set (D; A, B; M) = (TE; E,TM; M) the tangent prolongation double
vector bundle of a vector bundle (F, M, q).

Given a linear vector field (¢,2) and a in AF'; by [9], we have some vector
fields z(® € X(FM), £ ¢ X(FE) given by

2\ = Q(a)y o Fure, €@ = Q(a)g o Frt. (8.3)

Since (£(®, (%)) is the composition of (kp, kyr) with the a-lift (8.2) of (¢, )
to FE, (£, 2(9) is a linear vector field .
DEFINITION 8.3. (£, (%)) or £(4) is called the a-lift of (&, z) related to F.

Remark 8.4. Some properties of lifts of vector fields and functions on man-
ifolds can be found in [3 9, 12, [18]. For some additional properties of the
particular case of linear vector fields, one can refer to [19].

9. ON LIFTS OF LINEAR SECTIONS ON DUALS OF A
DOUBLE VECTOR BUNDLE

Let (D;A,B; M) be a double vector bundle with core C and (6.2)) its

vertical dual.

9.1. LINEAR SECTIONS ON DUALS OF A DOUBLE VECTOR BUNDLE. Let
us recall that a linear section w € T'%"(D*A) of (6.2) with respect to its
vertical vector bundle structure is a morphism of vector bundles

A —— D*A
qu lq*ci . (9.1)
M = C*
where w € I'(C*).
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A linear 1-form on F is a linear section of the vertical dual (T*E; E,E*; M)
of (TE; E,TM; M) with respect to its vertical vector bundle structure, i.e., a
smooth 1-form on FE that is a morphism of vector bundles

E -2 T*E

ql lrE (9.2)

over a smooth section of E*.

THEOREM 9.1. Let w € I'4(D*A) and denote w € C%(EA,R) the corre-
sponding function on D. The following assertions are equivalent:
(1) (w,w) is a linear section.

(2) @ e C2 (Dp,R).
Proof. (1) implies (2): We have to prove that

DLR

| |

B —— {pt}

is a vector bundle morphism. Let d,d’ € D such that ¢ (d) = ¢B(d') with
a = qf(d), a = qff(d’); we have

Z)(dgd’) = w(a+a')(d%‘§d’)

(w(a) & w(@)(d+d) (by (1))

= w(a)(d) +w(d)(d) (by (6.6))
=&(d) +a(d),

hence the result follows by Remark (3).

(2) implies (1): Let a,a’ € A such that ga(a) = ga(a’) = = ; we have
gt (wa) = ¢ (wa). Indeed, for all ¢ in Cy, d = T4(a, —c) and d' = 74(d’, +c)
satisfy d —g d' = 04(a + d'), hence,

0=w(d+d") =w(d) +&(d) =ws oTala,—c) +wy oTald, c)
B
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ie., @i (wa) = wa 07a(a,") = wy o7a(d,") = ¢ (wy). Hence, the rela-
tions (d + d',0) = (d,w) + (d',@), for every (d,d') in D, x D, imply that
B

w(a+d) = w(a) ék w(a’); whence wgq = s o War for all (s,a) in R x A, by
continuity. Finally, for all a in A, w(a) € (D*A)y(g4(a)), Where w : M — C* is

a map and since qgi‘ ow = woqu, wis a smooth section of C*, hence (w,w)
is a linear section. 1§

Remark 9.2. Some similar characterizations for linear 1-forms may be
found in [I7], [14] or [15].

Let (w,w) be a linear section of with respect to its vertical vector
bundle structure; hence by Remark we have

no 1 n .
@ lggran= Zl:#ﬂ t ijl wj B, (9.3)

where w [p= 37, wy! and w; : ¢ (U) = R, 1 < j < ny linear functions. In
the particular case of a linear 1-form (w,w) on FE, one can write

W lg-1)= lel wdy! + ijl w;da?, (9.4)

where w |[p= Y1, w;e! and w; : ¢ (U) — R, 1 < j < m linear functions.

9.2. LIFTS OF LINEAR SECTIONS. Now, given a linear section of (6.2])
(w,w) and a linear map A : A" — R, let

wA) =XoFw:FM — R, wh = oFw:FA—R. (9.5)

PROPOSITION 9.3. Hence (wM, w™) is a linear section of the vertical dual
of (5.3) (with respect to its vertical side bundle structure) such that

N (o) = (w(e) ™), (9-6)

for all linear section (o,g) in T4"(D), A : A" — R a linear map, a € A" and
Ao 1 AT — R given by \,(z) = Aazx).

Proof. Indeed

wM (o) — M og@ — Ao FwoQ(a)poFo (by (8.2))

—XoQ(a)po FoFo  (by (72))
= X0 F(w(0)) = (w(o))P)
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and since Fo : FD — A is a morphism of double vector bundles over
FA — {pt} and FB — {pt}, the result follows. 1

DEFINITION 9.4. The pair (w®),w®) is called the A-lift of (w,w) to FA.

9.3. APPLICATION TO LIFTS OF LINEAR 1-FORMS. Given a vector bundle
(E,M,q), let
T*E —£ E*

"
E M
be the vertical dual of the tangent double vector bundle (T'E; E,TM; M).
Let us give another proof of this result of [14].

For a linear function f € Cp%,(E), (df, f) is a linear 1-form on E. Indeed
let £ € T.E, ¢ € ToFE such that Tq(¢) = Tq(¢') and g,h € C®(R, E),

q(g¢) = q(ht) in a neighborhood of 0 with £ = %‘t:d &= % o} We have

7o) = F( 258, ,) = sl
= LF(90)],_ + LS (h)],_y = dF(E) +df(e')(€)

and the result follows by continuity (see Remark (3)).
Now, given a linear 1-form (w,w) on E and a linear map A : AP 5 R, by
[9], we have some 1-forms w™ € QY(FM), w™ € Q(FE) by

W =XoFGoryt i TFM — R, w® =XoFiokz!: TFE — R,
COROLLARY 9.5. (wM,w®M) is a linear 1-form on FE such that
WM (EW) = () ). (9.7)

for all linear vector field (x,€&) on TE, linear map \ : A” — R and a € A",

Proof. comes from [9] and (w™, wM) is the composition of the trans-
pose morphism ((kg)!, (kar)?) with the A-lift (9.5) of (w,w) to FE, hence
(W™, wM) is a linear 1-form. 1

DEFINITION 9.6. [9](w™,w®) is called the M-lift of (w,w) to FE.
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10. ON LIFTS OF LINEAR COVARIANT TENSOR FIELDS
ON DOUBLE VECTOR BUNDLES

10.1. LINEAR COVARIANT TENSOR FIELDS. Let (D*A; A,C*; M) be the
vertical dual of a double vector bundle (D; A, B; M). Let us set @Dy = A
and @A = M.

_ DEFINITION 10.1. A covariant tensor field w : A — ®*D*A (k > 1) on
D 4 is said linear if the associated multilinear morphism over A,
~ b
P 'Dy > (di,...,dj_1) — w(a)(dy,... dp_1,")
is a morphism of vector bundles
@k_lﬁA wb D*A
@ 1a8) | [t (10.2)
e'B ——— C*
over a smooth map w. In this case, w is in fact a multilinear morphism of
vector bundles over M.
When k& = 0, a linear tensor field is just a linear function A — R, while
for k =1, a linear tensor field is a linear section A — D*A of (6.2]).

One defines in the same way the concept of linear covariant tensor
fields on Dgp.

THEOREM 10.2. Let w: A — ®*D*A (k > 1) be a covariant tensor field
on Dy. The following assertions are equivalent:

(1) w is a linear tensor field.
(2) The associated multilinear function,
@Dy -5 R
@kDa > (dl, R ,dk) — w(a)(dl, - ,dk)
is a morphism of vector bundles

@Dy —“- R

(EB’“qE)l l

@®"'B —— {pt}
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Proof. The result is already proved for k = 1. Let k > 2.
(1)=(2) Let (by,...,bx) in @"By; for (di)1<i<k, (d))1<i<k in

(@D4),, _ =U_,[®n.0D,

such that d; € D, N Dy, and d; € Dy N Dy,,

I
SCT

I
&

(di)1<i<k—1) & W’ ((d})1<i<k—1)| (di + di) (by (1))

(
= &’ (di)r<isk—1)(di) + " (dD1<ish—1)(d})  (by ([6:6))
= W((di)1<i<i) + O((d)1<i<k)-

Moreover, for t € R and (d;)1<i<k € GszlDaﬁDbi, the equality w(t-(di)1<i<k)
= tw((di)1<i<k) holds by continuity.

(2)=(1) ® Let (di)i<i<k—1, (d})1<i<h—1 0 (D" Da)b),cicp > © = an(bi)
such that d; € D, N Dy, and d} € Dy N Dy, ; we have qéﬁ‘(wb((di)lgigk,l)) =
G (W’ ((d))1<i<k—1)). Indeed, for all ¢ in Cy, dy = 7a(a,—c) and d}, =
Ta(d, +c) satisfy di —g d,, = 04(a + a'), hence,

(di)r<ick + (di)1<i<k) = D((di)1<i<k) + O((d})1<i<k)

0=w
W ((di)1<i<k—1) © Tala, —¢) + w ((d))1<i<k—1) © Tald’, ),

ie., gt (@ ((di)i<icr-1) = 2@ ((d))i<i<k—1)). So, for all (di)i<icp—1 in

(@k_lDA)(bi)KKk_l, one has

b
w’((di)1<i<k—1) € (D" A)w((bi)1<irr)s
where w : @k_lB — C* is a map; since q*cé ow=wo (@kflqg), w is a smooth

fibered map over M.
e Moreover, the equalities

O((di)r<i<k + (d)1<i<k) = O((di)1<i<i) + O((d)1<i<k),
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for all (d;)1<i<k, (d)1<i<k in (B Da)(b),~,-,» such that d; € D, and d € Dy
imply o

W ((di)1<ici—1 + (d])1<i<k—1) = @’ ((di)1<i<k—1) & W ((d])1<i<k—1),

for all (di)lgigk—lv (d;‘)lgigk—l in (EBkilﬁA)(bihgigkfu such that d; € D, and
d; € Dy by continuity,

- W ((di)1<i<k-1),

W ((s diligisi-1) = s 5

for all (s, (d;)1<i<k_1) in R x @*D,,.
Therefore, (w,w) is a linear covariant tensor field. I

Remark 10.3. Let w: A — ®*D*A (k > 2) be a linear covariant tensor
field on D4 ; the associated multilinear morphism over id4 1S a mor-
phism of vector bundles over id 4 if and only if £ = 2. In this case w : B — C*
is a morphism of vector bundles.

COROLLARY 10.4. Let w : A — ®*D*A (k > 2) be a linear covariant
tensor field on Dy and (87,~') the dual frame of the local frame (j3j,7;) of
Dy |qgl(U) defined by 1} Hence w ‘qZI(U) equals

k
ijl-~-ja—llja+l--~jk o0qa ‘q;l(U) 6]1 R...RQ B]a—l ® ’Yl ® 5]&—0—1 R...® B]k

a=1

+wjp g @ © B, (10.3)

. .1
where wWj, . 1ljoi1.ge : U — R are smooth, wj, j, n : q4 (U) — R are
linear functions and wj, j, 1 = Wi, e, are given by the relations

ya) _ =l
Q(ﬂh T /Bjk—l) = Wi gl

Proof. Tt is clear by that each term of the right hand of ((10.3)) is a
linear tensor field on Dy |q;1(U)' Conversely, since qé’i‘(wb(dl, coydig—1)) =0

when one of these vectors belongs to the kernel of qg, all terms of w |QZ1(U)
of the form fX'®...@ X* 1@ql with {X1,..., X1 n{yt, .. 90} #0
vanish by .

Likewise, all terms of w ‘q;l(U) of the form fX'®...® X* 1 ® 7 vanish
when the cardinality s of the intersection {Xl, .. .,kal} N {'yl, R
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is greater than 1; indeed let (d;)i<i<k in @kﬁA such that d, = fj,(a)
and dy, . ..,dg_1 belong to the union {51(a), ..., Bn,(a)}U{1(a),...,m(a)};
the equalities w(t - (d;)1<i<k) = tw((di)1<i<k), for all real number ¢t write,
Ewryry gy, (ta) = twry 5, (@) hence wyy 5, (a) = 0.

Moreover, w o (&8 1¢B)(d) = ¢ o w’(d) with d = (B, (a), ..., Bj,_,(a))
gives by ,

Wi e 1(2a(@)7 (ga(a)) = wj,j_1(a)7 (ga(a)),

e Wiy gl = gt g ) -

Applying the linearity of @ on d = (8;,(a))i1<a<k, d = (Bj.(a))1<a<k and
t € R, the linearity of wj, _j follows. Thus w ’qgl(U) is of the form ((10.3). 1

Remark 10.5. In the case of a skew-symmetric tensor field w : A —
A¥D*A (k > 2), we have

1 . . . )
_ j Jo - Y j

w ’qzl(U)_ (k_l)!gjljk—lloqA ’q;l(U)ﬁl/\.(gﬂ 1+w]1]k51/\"/\6k7

where wj, ;. : ¢4 (U) — R are linear functions and wj, _j, ,1 = Wiy el AT€

given by the relations Q(le A '/\Bjk—l) = le...jk,lﬁl- In the particular case
of a linear k-form on a vector bundle (E, M, q), we have

1

W g1y = T_l)%y-.ik_ﬂd‘xil Ao Adxt A dy?

10.4
1 J 401 i ( )
-I—ywilmikjy dx™ A ... ANdx'™,

as in [15].

10.2. LIFTS OF LINEAR COVARIANT TENSOR FIELDS. Now, let a linear
covariant tensor field w € Fﬁ"(@kD*A) given by its morphism of DVB

®"'Ds —— R
@kqgl l (k> 2).
®'B —— {pt}
One defines a covariant tensor field w® : FA — @*(FD)*FA by

w(“):poF@:@k(ﬁ)FAHR,

where 1 : AT — R is a linear map.
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DEFINITION 10.6. w® is called the p-lift of w.

PROPOSITION 10.7. Thenw® is a linear covariant tensor field on (FA‘Z/))FA
such that

w(t) (J%al), o ,U]gak)) = (w(o1,..., o)) Harar) (10.5)
for all linear sections (oj,0;)1<i<k in T4"(D), p : AP — R a smooth Iin-
ear map, ai,...,a; € AY and Kai...ap - AF — R given by Lay..ap () =

ulay ... apx).

Proof. Since Fw : F(@®"D4) = @"(FD)pa — A" is a morphism of vector
bundles over F(B*B) %@FB — {pt} and FA — {pt}, w® is a linear
covariant tensor field on (FD)p4. Moreover

W™, o) =poFio (™ 0.0 o™))
oo (@lea(ai)p> ° (@leFai)
= o (@, Q(a)x) o FE o F (@ 101)
— llag..ap © F(Uu o EBZLla@-)

= fay..ap © F((w(o1,...,0%)))

= (w(al, .. ,Uk))('ual“‘a’“).
|

Remark 10.8. (10.5)) is in fact a modification of a result of [9]. All mate-
rials developped in this section are valid for linear contravariant tensor fields.
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