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1. Introduction and statement of the main results

When an orbit of a differential system having a point in a set S is com-
pletely contained in S, we say that the set S is invariant for such a differential
system. The set S for a differential system in R3 usually is a surface. Darboux
in [4] was one of first mathematicians to study invariant sets of the polynomial
differential systems. In fact he used the existence of invariant sets for studying
the integrability of the polynomial differential systems.

After Darboux, many authors have studied different differential systems
having many distinct kinds of invariant sets, including invariant circles [1, 10,
9], invariant spheres [2, 12, 13], and invariant tori [11, 15, 16]. In this paper
we want to study the simplest polynomial differential systems in the space R3

having some invariant cylinder.
A polynomial differential system in R3 is a differential system of the form

ẋ = P (x, y, z),

ẏ = Q(x, y, z),

ż = R(x, y, z),

(1)
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where P , Q and R are real polynomials in the variables x, y and z, and the dot
denotes derivative with respect to the time t. The degree of the polynomial
differential system (1) is the maximum of the degrees of the polynomials P ,
Q and R.

Here we shall work with the following three surfaces in R3, the hyperbolic
cylinder x2−y2 = 1, the parabolic cylinder x2−y = 1, and the elliptic cylinder
x2 + y2 = 1. We say that one of these cylinders is invariant under the flow of
the differential system (1) if for every orbit (x(t), y(t), z(t)) of the differential
system (1) having a point on that cylinder the whole orbit is contained in it.

Two natural questions about the invariant cylinders of polynomial differ-
ential systems (1) are: What are the easiest polynomial differential systems
(1) in R3 having an invariant cylinder, and for such polynomial differential sys-
tems what are their phase portraits on the invariant cylinder? The objective
of this paper is to give an answer to these two questions.

Here to look for the easiest polynomial differential systems in R3 having an
invariant cylinder, means that we are looking for the polynomial differential
systems in R3 with the smallest degree having some of the mentioned three
kind of cylinders as an invariant surface. We shall see that such polynomial
differential systems will have degree one and two.

Let U be an open and dense set in R3. We recall that a C1 function
H : U → R which is non-locally constant is a first integral of the differential
system (1) if H is constant on all the solutions (x(t), y(t), z(t)) contained in
U . In other words, on the solution (x(t), y(t), z(t)) we have that

dH

dt
=
∂H

∂x
P +

∂H

∂y
Q+

∂H

∂z
R = 0. (2)

Let f(x, y, z) be a real polynomial. The algebraic surface f(x, y, z) = 0
is invariant for the polynomial differential system (1) if there exists a real
polynomial k(x, y, z) satisfying the equality

∂f

∂x
P +

∂f

∂y
Q+

∂f

∂z
R = kf. (3)

The polynomial k is called the cofactor of the invariant algebraic surface
f(x, y, z) = 0, and from (3) it follows that the degree of the polynomial k is
at most the degree of the polynomial differential system (1) minus one.

From (3) it follows that the gradient (∂f/∂x, ∂f/∂x, ∂f/∂z) of f is orthog-
onal to the vector field (P,Q,R) of the polynomial differential system (1) on
the points of the invariant algebraic surface f(x, y, z) = 0. Therefore the vec-
tor field (P,Q,R) is contained in the tangent plane to the surface f(x, y, z) = 0
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at every point of the invariant algebraic surface f(x, y, z) = 0. Hence the sur-
face f(x, y, z) = 0 is formed by orbits of the vector field (P,Q,R), in other
words if an orbit has a point on the invariant surface f(x, y, z) = 0, then the
whole orbit is contained in it. This justifies the name “invariant algebraic
surface” for the surface f(x, y, z) = 0. For more details on first integrals and
invariant algebraic surfaces, see [5, Chapter 8].

The existence of invariant surfaces in the polynomial differential systems
of R3 many times force the existence of first integrals, this phenomenon was
studied by the Darboux theory of integrability, see for instance [4, 5, 7, 8].
Here we shall see that for the linear differential systems the existence of an
invariant cylinder it is sufficient for the existence of a first integral.

The phase portrait of the differential system (1) on an invariant cylinder
is the decomposition of the cylinder as union of all its orbits. The best quali-
tative result for a differential system is to provide its phase portrait, i.e., the
decomposition of the domain of definition of the differential system as union
of all its orbits.

Certainly the most easiest polynomial differential systems in R3 are the
linear ones:

ẋ = a0 + a1x+ a2y + a3z,

ẏ = b0 + b1x+ b2y + b3z,

ż = c0 + c1x+ c2y + c3z,

(4)

i.e., the polynomial differential systems of degree one. After these linear differ-
ential systems, without loss of generality, the polynomial differential systems
of the form

ẋ = a0 + a1x+ a2y + a3z,

ẏ = b0 + b1x+ b2y + b3z,

ż = c0 + c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2,

(5)

are the easiest ones.

In the next theorems we characterize the linear differential systems (4)
and the polynomial differential systems (5) having an invariant either hyper-
bolic, or parabolic, or elliptic cylinder, and we describe the dynamics of these
differential systems on those invariant cylinders.
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Theorem 1. The linear differential systems (4) in R3 for which the hy-
perbolic cylinder x2 − y2 = 1 is invariant are

ẋ = a2y,

ẏ = a2x,

ż = c0 + c1x+ c2y + c3z.

(6)

These differential systems have the first integral H = H(x, y, z) = x2 − y2, so
R3 is foliated by the invariant hyperbolic cylinders H = h when h 6= 0 and by
one invariant surface H = 0, product of two planes.

(a) Assume a2 = 0. Then every straight line parallel to the z-axis is invari-
ant by the flow of system (6).

(a.1) If c3 6= 0 every one of these invariant straight lines x = x0, y = y0,
is formed by three orbits, one of them is the equilibrium point

p = −c0 + c1x0 + c2y0

c3
,

and the other two either start at infinity and ends at the equilibrium
point p, or start at the equilibrium point and end at infinity.

(a.2) If c3 = 0 then every one of these invariant straight lines x = x0,
y = y0 is formed by a unique orbit starting and ending at infinity
if c0 + c1x0 + c2y0 6= 0. If c0 + c1x0 + c2y0 = 0 the invariant straight
line x = x0, y = y0 is filled with equilibria.

(b) Assume a2 > 0 (otherwise we change the time of sign).

(b.1) Asssume h 6= 0 and c3 6= 0. Then all orbits on the hyperbolic
cylinders start and end at infinity.

(b.2) Asssume h = 0 and c3 6= 0. Then the differential system (6) has
a unique equilibrium point p = (0, 0,−c0/c3). The local phase
portrait of this equilibrium point on the invariant plane x− y = 0
is a hyperbolic saddle if c3 < 0, or a hyperbolic unstable node
if c3 > 0. While on the plane x + y = 0 the equilibrium p is a
hyperbolic saddle if c3 > 0, or a hyperbolic stable node if c3 < 0.

(b.3) Asssume c3 = 0 and c0 6= 0. Then on the invariant hyperbolic
cylinders and on the invariant two planes every orbit starts and
ends at infinity.
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(b.4) Asssume h 6= 0 and c3 = c0 = 0. Then on the invariant hyperbolic
cylinders every orbit starts and ends at infinity.

(b.5) Asssume h = 0 and c3 = c0 = 0. The straight line of the intersec-
tion of the two invariant planes x − y = 0 and x + y = 0 is filled
with equilibria, and at each one of this equilibria either arrives two
orbits, or exit two orbits.

We note that when we say that an orbit “starts” on an equilibrium point
or at infinity we are saying that the α-limit of this orbit is an equilibrium
point or the infinity. For a definition of α-limit of an orbit see for instance [5].
In a similar way when we say that an orbit “ends” on an equilibrium point or
at infinity we are saying that the ω-limit of this orbit is an equilibrium point
or the infinity.

Theorem 2. The polynomial differential systems (5) in R3 for which the
hyperbolic cylinder x2 − y2 = 1 is invariant are

ẋ = a2y,

ẏ = a2x,

ż = c0 + c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2.

(7)

These differential systems have the first integral H = H (x, y, z) = x2− y2, so
R3 is foliated by the invariant hyperbolic cylinders H = h when h 6= 0, and by
one invariant surface H = 0 product of two planes. These differential systems
have no periodic orbits.
Let A = (c3 + c6x+ c8y)2 − 4c9

(
c0 + c1x+ c2y + c4x

2 + c5xy + c7y
2
)

be.

(a) Assume a2 = 0. Then all the orbits live on paralell straight lines to the
z-axis.

(a.1) If c9 6= 0 and A > 0, then every straight line parallel to the z-axis,
x = x0 and y = y0, is invariant containing two equilibria:

p1 = −c3 + c6x0 + c8y0 +
√
A

2c9
, p2 = −c3 + c6x0 + c8y0 −

√
A

2c9
.

Every invariant straight line is formed by five orbits, two of these
orbits are the equilibria p1 and p2. These five orbits are: one
orbit starts at infinity and ends at the equilibrium point pi, the
equilibrium point pi, another orbit starts at the equilibrium point
pj with j 6= i and ends at the equilibrium point pi, the equilibrium
point pj , and one orbit that starts in pj and ends at infinity.
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(a.2) If c9 6= 0 and A = 0, then the invariant straight line x = x0 and
y = y0 contains the equilibrium point

p = −c3 + c6x0 + c8y0

2c9
.

This invariant straight line is formed by three orbits, one orbit
starting at infinity and ending at the equilibrium point p, the equi-
librium point p, and one orbit starting at the equilibrium pont p
and ending at infinity.

(a.3) If c9 6= 0 and A < 0, then every one of these invariant straight lines
is formed by a unique orbit starting and ending at infinity.

(a.4) If c9 = 0, then every invariant straight line parallel to the z-axis,
x = x0 and y = y0, with c3 + c6x0 + c8y0 6= 0 contains one equilib-
rium

q = −c0 + c1x0 + c2y0 + c4x
2
0 + c5x0y0 + c7y

2
0

c3 + c6x0 + c8y0
.

This invariant straight line is formed by three orbits, one of them
is the equilibrium point q and the other two either start at infinity
and end at the equilibrium point q, or start at the equilibrium point
and end at infinity. If c3 + c6x0 + c8y0 = 0 and c0 + c1x0 + c2y0 +
c4x

2
0 +c5x0y0 +c7y

2
0 6= 0, then on the invariant straight line there is

a unique orbit that starts and ends at infinity. If c3+c6x0+c8y0 = 0
and c0 + c1x0 + c2y0 + c4x

2
0 + c5x0y0 + c7y

2
0 = 0, then the invariant

straight line is filled with equilibria.

(b) Assume a2 > 0 (otherwise we can change the time of sign).

(b.1) If h = 0, c9 6= 0 and c2
3− 4c0c9 > 0, then the differential system (7)

has two equilibria

P1 =

(
0, 0,
−c3 −

√
c2

3 − 4c0c9

2c9

)

and

P2 =

(
0, 0,
−c3 +

√
c2

3 − 4c0c9

2c9

)
,

contained in the straight line intersection of the two invariant planes
x−y = 0 and x+y = 0. The local phase portrait at these equilibria
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on the invariant plane x− y = 0 is a hyperbolic saddle for P1 and
a hyperbolic unstable node for P2, while on the invariant plane
x + y = 0 is a hyperbolic stable node for P1 and a hyperbolic
saddle for P2.

(b.2) If h = 0, c9 6= 0 and c2
3 − 4c0c9 = 0, then the differential system

(7) has only one equilibrium point P = (0, 0,−c3/2c9) contained
in the straight line intersection of the two invariant planes. The
local phase portrait of this equilibrium on both invariant planes
x− y = 0 and x+ y = 0 is a semi-hyperbolic saddle-node.

(b.3) If h = 0, c9 6= 0 and c2
3 − 4c0c9 < 0, then the differential system

(7) does not present equilibria and all the orbits start and end at
infinity.

(b.4) Assume h = 0 and c9 = 0. Then if c3 6= 0 the differential system (7)
has the equilibrium point Q = (0, 0,−c0/c3) in H = 0. The local
phase portrait on the invariant plane x− y = 0 at this equilibrium
is a hyperbolic unstable node when c3 > 0, and a hyperbolic saddle
when c3 < 0. On the invariant plane x + y = 0 Q is a hyperbolic
saddle when c3 > 0, and a hyperbolic stable node when c3 < 0. If
c3 = 0 then the system does not have equilibria and all orbits in
H = 0 start and end at infinity.

(b.5) Assume h 6= 0. Then all orbits in H = h start and end at infinity.

Theorem 3. The linear differential systems (4) in R3 for which the
parabolic cylinder x2 − y = 1 is invariant are

ẋ = a0 + a1x,

ẏ = 2a1 + 2a0x+ 2a1y,

ż = c0 + c1x+ c2y + c3z.

(8)

These differential systems have the first integral H (x, y, z) = H = x2 − y
when a1 = 0, then R3 is foliated by the invariant parabolic cylinders H = h,
where h ∈ R.

(a) If a1 = 0 and a0 = 0 then system (8) coincides with system (6) with
a2 = 0, and consequently the statements (a.k) for k = 1, 2 of Theorem
1 hold for system (8).

(b) If a1 = 0 and a0 6= 0, then the differential system (8) has no equilibria
and every one of the orbits start and end at infinity.
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(c) Assume a1 > 0 (otherwise we can change the time of the sign).

(c.1) If c3 6= 0 then the differential system (8) has a unique equilibrium
point

p =

(
−a0

a1
,
a2

0 − a2
1

a2
1

,−a0a1c1 − a2
0c2 + a2

1(c2 − c0)

a2
1c3

)
,

that lives on the parabolic cylinder x2 − y = 1. Its local phase
portrait on this cylinder is a hyperbolic saddle when c3 < 0, and a
hyperbolic unstable node when c3 > 0.

(c.2) If c3 = 0 then the differential system (8) has no equilibria and the
orbits start and end at infinity.

Theorem 4. The polynomial differential systems (5) in R3 for which the
parabolic cylinder x2 − y = 1 is invariant are

ẋ = a0 +
b2x

2
,

ẏ = b2 + 2a0x+ b2y,

ż = c0 + c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2.

(9)

Let A, p1, p2 and p be the constant and the equilibria defined in the statement
of Theorem 2.

(a) Assume b2 = 0. Then the function H (x, y, z) = H = x2 − y is a first
integral of the differential system (9).

(a.1) If a0 6= 0 then the differential system (9) has no equilibria and all
the orbits start and end at infinity.

(a.2) If a0 = 0 then system system (9) coincides with system (7) with
a2 = 0 and consequently all statements (a.k) for k = 1, 2, 3, 4 of
Theorem 2 hold for system (9).

(b) Assume b2 > 0 (otherwise we change the time sign). We define

A = −b42c3 + 2a0b
3
2c6 − 4a2

0b
2
2c8 + b42c8,

B = A2 − 4b42c9C,

C = −b42c0 − 2a0b
3
2c1 + 4a2

0b
2
2c2 − b42c2 + 4a2

0b
2
2c4 − 8a3

0b2c5

+ 2a0b
3
2c5 + 16a4

0c7 − 8a2
0b

2
2c7 + b42c7,

D = b22c3 − 2a0b2c6 + 4a2
0c8 − b22c8.
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(b.1) If c9 6= 0 and B > 0, then the differential system (9) has on the
parabolic cylinder x2 − y − 1 = 0 has no periodic orbits and two
equilibria

P1 =

(
−2a0

b2
,
4a2

0

b22
− 1,

A−
√
B

2b42c9

)
and

P2 =

(
−2a0

b2
,
4a2

0

b22
− 1,

A+
√
B

2b42c9

)
.

P1 is a hyperbolic saddle and P2 a hyperbolic unstable node.

(b.2) If c9 6= 0 and B = 0, then on the parabolic cylinder x2 − y = 1
there are no periodic orbits and one equilibrium point,

P =

(
−2a0

b2
,
4a2

0

b22
− 1,

A

2b42c9

)
,

that is a semi-hyperbolic saddle-node.

(b.3) If c9 6= 0 and B < 0, then the differential system (9) on the
parabolic cylinder x2− y = 1 has no equilibria and the orbits start
and end at infinity.

(b.4) Assume c9 = 0. Then, if D 6= 0 the differential system (9) has no
periodic orbits and a unique equilibrium point

Q =

(
−2a0

b2
,
4a2

0

b22
− 1,

C

b22D

)
,

in the parabolic cylinder x2 − y = 1. Q is a hyperbolic unstable
node if D > 0, a hyperbolic saddle. If D = 0 the system has no
equilibria and all orbits on H = 0 start and end at infinity.

Theorem 5. The linear differential systems (4) in R3 for which the elliptic
cylinder x2 + y2 = 1 is invariant are

ẋ = a2y,

ẏ = −a2x,

ż = c0 + c1x+ c2y + c3z.

(10)

These differential systems have the first integral H = H(x, y, z) = x2 + y2,
so R3 is foliated by the invariant elliptic cylinders H = h > 0, and by the
invariant z-axis when H = 0.
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(a) If a2 = 0 then system (10) coincides with system (6) with a2 = 0, and
consequently the statements (a.k) for k = 1, 2 of Theorem 1 hold for
system (10).

(b) Assume a2 6= 0. Then the dynamics on the invariant cylinders H =
x2 + y2 = h > 0 and on the z-axis H = x2 + y2 = h = 0 are described
in what follows.

(b.1) Assume h > 0 and c3 6= 0. Then on the cylinder H = h there is a
unique periodic orbit γh, and the orbits on the cylinder distinct to
this periodic orbit either start in γh and end at infinity, or start at
infinity and end at γh.

(b.2) Assume h > 0, c3 = 0 and c0 6= 0. Then on the invariant cylinders
H = h all orbits start and end at infinity.

(b.3) Assume h > 0 and c3 = c0 6= 0. Then on the invariant cylinders
H = h all orbits are periodic.

(b.4) Assume h = 0 and c3 6= 0. Then on the invariant z-axis there is
the equilibrium point p = (0, 0,−c0/c3), and two orbits that either
start at p and end at infinity, or start at infinity and end at p.

(b.5) Assume h = 0, c3 = 0 and c0 6== 0. Then on the invariant z-axis
there is a unique orbit that starts and ends at infinity.

(b.6) Assume h = 0, c3 = c0 = 0. Then the invariant z-axis if filled with
equilibria.

Theorem 6. The polynomial differential systems (5) in R3 for which the
elliptic cylinder x2 + y2 = 1 is invariant are

ẋ = a2y,

ẏ = −a2x,

ż = c0 + c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2.

(11)

These differential systems have the first integral H = H (x, y, z) = x2 + y2.
So R3 is foliated by the invariant elliptic cylinders H = h > 0 and by the
invariant straight line H = 0 (the z-axis).

(a) Assume a2 = 0. Then all statements of (a) of Theorem 2 hold for system
(11).

(b) Assume a2 > 0 (otherwise we can change the time of sign).
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(b.1) If h = 0, c9 6= 0 and c2
3 − 4c0c9 > 0, then the differential system

(11) has the two equilibria

P1 =

(
0, 0,
−c3 −

√
c2

3 − 4c0c9

2c9

)
and

P2 =

(
0, 0,
−c3 +

√
c2

3 − 4c0c9

2c9

)
,

contained in H = 0. The local phase portrait of these equilibria
on the z-axis is formed by five orbits, two of these orbits are the
equilibria P1 and P2. These five orbits are: one orbit starts at
infinity and ends at the equilibrium point Pi, the equilibrium point
Pi, another orbit starts at the equilibrium point Pj with j 6= i and
ends at the equilibrium point Pi, the equilibrium point Pj , and one
orbit that starts in Pj and ends at infinity.

(b.2) If h = 0, c9 6= 0 and c2
3 − 4c0c9 = 0, then the differential system

(11) has only one equilibrium point p = (0, 0,−c3/2c9) contained
in H = 0. This invariant straight line is formed by three orbits,
one orbit starting at infinity and ending at the equilibrium point p,
the equilibrium point p, and one orbit starting at the equilibrium
pont p and ending at infinity.

(b.3) If h = 0, c9 6= 0 and c2
3− 4c0c9 < 0, the differential system (11) has

no equilibria and all orbits start and end at infinity.

(b.4) If h = 0, c9 = 0 and c3 6= 0, then the differential system (11) has
the equilibrium point q = (0, 0,−c0/c3) in H = 0. This invariant
straight line is formed by three orbits, one of them is the equilibrium
point q and the other two either start at infinity and end at the
equilibrium point q, or start at the equilibrium point and end at
infinity.

(b.5) If h = 0, c9 = c3 = 0, then the invariant straight line H = 0 is
filled with equilibria.

(b.6) If h > 0 then all the orbits start and end at infinity.

2. Proof of the theorems

Proof of Theorem 1. A linear differential system (4) having the invariant
hyperbolic cylinder f = f(x, y, z) = x2 − y2 − 1 = 0 must satisfy the equality
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(3), i.e.,

2x (a0 + a1x+ a2y + a3z)− 2y (b0 + b1x+ b2y + b3z) = k(x2 − y2 − 1),

where k ∈ R is the cofactor, because the differential system (4) has degree
one. From the previous equality we obtain

a0 = a1 = a3 = b0 = b2 = b3 = k0 = 0, b1 = a2.

Substituting these values in the differential system (4), we obtain the differ-
ential system (6) of the statement of Theorem 1. Using (2) we obtain that
H = H(x, y, z) = x2−y2 is a first integral of the differential system (6). So all
hyperbolic cylinders H = h with h 6= 0 are invariant, and also are invariant
the two planes H = 0.

Assume a2 = 0 and c3 6= 0. Then the planes x = x0 and y = y0, are
invariant under the flow of the differential system (6), and consequently all
the straight lines parallel to the z-axis are formed by orbits of the differ-
ential system (6). Every one of these invariant straight lines are formed
by three orbits, one starting at infinity and ending in the equilibrium point
p = (x0, y0,−(c0 + c1x0 + c2y0)/c3), this equilibrium point p, and one starting
at the equilibrium point p and ending at infinity. Statement (a.1) is proved.

Assume a2 = c3 6= 0. Then every one of these invariant straight lines
x = x0, y = y0 is formed by a unique orbit starting and ending at infinity if
c0 + c1x0 + c2y0 6= 0. If c0 + c1x0 + c2y0 = 0 then the invariant straight lines
x = x0, y = y0 is filled with equilibria. Statement (a.2) is proved.

Assume a2 > 0, h 6= 0 and c3 6= 0. Since on the invariant hyperbolic
cylinders there are no equilibrium points, also there are no periodic orbits be-
cause if a periodic orbit exists on one of these invariant surfaces, in the region
bounded by this periodic orbit must be an equilibrium point, see [5, Theorem
1.31]. Since the orbits of any differential system are either equilibrium points,
or periodic orbits, or homeomorphic to a straight line, it follows that on the
hyperbolic cylinders all orbits are homeomorphic to a straight line. These or-
bits γ(t) = (x(t), y(t), z(t)) homeomorphic to a straight line are defined for all
time in R because are solutions of a linear differential system, see [14, Chapter
3]. Then, by [5, Theorem 1.2] it follows that γ(t) tends to the boundary of the
hyperbolic cylinder or to the boundary of the invariant planes when t tends
to ±∞. In other words, all orbits on the hyperbolic cylinders start and end
at infinity. This proves statement (b.1).

Assume a2 > 0, h = 0 and c3 6= 0. Then the differential system (6) has
a unique equilibrium point p = (0, 0,−c0/c3). This equilibrium point lives in
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the intersection of the two planes H = 0. On the invariant plane x − y = 0,
the equilibrium p has eigenvalues a2 and c3, so by [5, Theorem 2.15] p is a
hyperbolic saddle if c3 < 0, or a hyperbolic unstable node if c3 > 0. On
the invariant plane x + y = 0, the equilibrium p has eigenvalues −a2 and c3,
so by [5, Theorem 2.15] p is a hyperbolic saddle if c3 > 0, or a hyperbolic
stable node if c3 < 0. Since these two planes are invariant we have two linear
differential systems with saddles or nodes, their phases portraits are very well
known. Statement (b.2) is proved.

Assume a2 > 0, c3 = 0 and c0 6= 0. Since on the invariant hyperbolic
cylinders or in the invariant planes there are no equilibrium points, the same
arguments than in the case a2 > 0, h 6= 0 and c0 6= 0, it follows that all orbits
on the hyperbolic cylinders or on the two invariant planes the start and end
at infinity. This proves statement (b.3).

Assume a2 > 0, h 6= 0 and c3 = c0 6= 0. Since on the invariant hyperbolic
cylinders there are no equilibrium points, using again the same arguments
than in the case a2 > 0, h 6= 0 and c0 6= 0, it follows that all orbits on the
hyperbolic cylinders start and end at infinity. Statement (b.4) is proved.

Assume a2 > 0, h = 0 and c3 = c0 6= 0. Then is easy to verify that
the straight line L of the intersection of the invariant planes x − y = 0 and
x + y = 0 is filled of equilibria. Since the eigenvalues of the Jacobian matrix
of the differential system (6) are ±a2 and 0, the straight line is a normally
hyperbolic manifold and consequently to each equilibrium point of this line
either arrives or exit two orbits, for more details see [6]. This proves statement
(b.5). Hence the theorem is proved.

Proof of Theorem 2. The polynomial differential system (5) having the
invariant hyperbolic cylinder f = f (x, y, z) = x2 − y2 − 1 = 0 must satisfy
the equality (3), i.e.,

2x(a0 + a1x+ a2y + a3z)− 2y (b0 + b1x+ b2y + b3z)

= (k0 + k1x+ k2y + k3z)
(
x2 − y2 − 1

)
,

where k0 + k1x+ k2y+ k3z, with k0, k1, k2, k3 ∈ R is the cofactor, because the
differential system (5) has degree two. From the above equality, we get

a0 = a1 = a3 = b0 = b2 = b3 = k0 = k1 = k2 = k3 = 0, b1 = a2.

Substituting these values into the differential system (5), we obtain the dif-
ferential system (7) of the statement of Theorem 2.
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Using (2) we obtain that H = H (x, y, z) = x2 − y2 is a first integral of
the differential system (7). So all hyperbolic cylinders H = h with h 6= 0 are
invariant, and also are invariant the two planes H = 0.

If a2 = 0 then the planes x = x0 and y = y0 are invariant for the differential
system (7), and consequently all the straight lines paralell to the z-axis are
formed by orbits of the differential system (7). Moreover, since the restriction
of the differential system (7) on the invariant surfaces H = h are linear or
quadratic polynomial differential systems that as we shall see have neither
foci nor centers, these systems can not have periodic orbits, because the linear
differential systems distinct from a center have no periodic orbits, and the
quadratic systems without centers or without focus also do not have periodic
orbits, see [3].

If a2 = 0, c9 6= 0 and A > 0 (where the constant A is defined in the
statement of the theorem), every one of these invariant straight lines is formed
by five orbits, two of them are the equilibria p1 and p2 (defined in the statement
of the theorem). This five orbits are: one orbit starting at infinity and ending
in pi, the orbit pi, the orbit starting in pj with j 6= i and ending in pi, the
orbit pj , and the orbit starting in pj and ending at infinity. Statement (a.1)
is proved.

If a2 = 0, c9 6= 0 and A = 0, then every one of these invariant straight
lines is formed by three orbits, one of them is the equilibrium p (defined in
the statement of the theorem). This three orbits are: one orbit starting at
infinity and ending in p, the equilibrium p, and the orbit starting in p and
ending at infinity. So statement (a.2) follows.

If a2 = 0, c9 6= 0 and and A < 0, then every one of these invariant straight
lines is formed by a unique orbit starting and ending at infinity. So statement
(a.3) is proved.

If a2 = 0 and c9 = 0, then the invariant straight line x = x0 and y = y0

with c3 + c6x0 + c8y0 6= 0 contains the equilibrium q (defined in the statement
of the theorem). Then, clearly this invariant straight line is formed by three
orbits, one of them is the equilibrium point q and the other two either start at
infinity and end at the equilibrium point q, or start at the equilibrium point
and end at infinity. The rest of the statement (a.4) follows easily.

Assume a2 > 0, h = 0, c9 6= 0 and c2
3 − 4c0c9 > 0. Then the differential

system (7) has the two equilibria P1 and P2 (defined in the statment of the
theorem). These two equilibria live in the intersection of the two planes H = 0.
On the invariant plane x − y = 0 the equilibrium P1 has eigenvalues a2 and
−
√
c2

3 − 4c0c9, so by [5, Theorem 2.15] P1 is a hyperbolic saddle. Since P2 has
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eigenvalues a2 and
√
c2

3 − 4c0c9, so by [5, Theorem 2.15] P2 is a hyperbolic
unstable node. On the invariant plane x + y = 0 the equilibrium P1 has
eigenvalues −a2 and −

√
c2

3 − 4c0c9 and so it is a hyperbolic stable node and
P2 has the eigenvalues −a2 and

√
c2

3 − 4c0c9, hence it is a hyperbolic saddle.
Statement (b.1) is proved.

Assume a2 > 0, h = 0, c9 6= 0 and c2
3 − 4c0c9 = 0. Then we have only one

equilibrium point P . This equilibrium point lives in the intersection of the
two planes H = 0. On the invariant plane x − y = 0, the equilibrium P has
eigenvalues 0 and a2, so by [5, Theorem 2.19] P is a semi-hyperbolic saddle-
node. On the invariant plane x + y = 0, the equilibrium P has eigenvalues
0 and −a2, again by [5, Theorem 2.19] p is a semi-hyperbolic saddle-node.
Hence statement (b.2) follows.

Assume a2 > 0, h = 0, c9 6= 0 and c2
3− 4c0c9 < 0. Then the system has no

equilibria and so all orbits start and end at infinity, as explained in the proof
of statement (b.1) of Theorem 1. This completes the proof of statement (b.3).

Assume h = 0 when c9 = 0. Then the differential system (7) presents only
one equilibrium point Q (defined in the statement of the theorem) that lives
in the intersection of the two planes H = 0, when c3 6= 0. On the invariant
plane x− y = 0 the equilibrium Q has eigenvalues a2 and c3, so when c3 > 0
p is a hyperbolic unstable node, and when c3 < 0 then Q is a hyperbolic
saddle. On the invariant plane x + y = 0 the equilibrium Q has eigenvalues
−a2 and c3, which characterizes Q as a hyperbolic saddle when c3 > 0 and a
hyperbolic stable node when c3 < 0. If we have c3 = 0, the system does not
have equilibria and so all orbits on H = 0 start and end at infinity, as it was
explained in the proof of statement (b.1) of Theorem 1. Statement (b.4) is
proved.

Assume h 6= 0. Sine on the the hyperbolic cylinders H = h there are no
equilibria, by the arguments of the proof of statement (b.1) of Theorem 1 all
orbits start and end at infinity. Statement (b.5) is proved. Hence the proof
of the theorem is done.

Proof of Theorem 3. A linear differential system (4) having the invariant
parabolic cylinder f = f (x, y, z) = x2 − y − 1 = 0, must satisfy the equality
(3), i.e.,

2x (a0 + a1x+ a2y + a3z)− (b0 + b1x+ b2y + b3z) = k
(
x2 − y − 1

)
,

where k ∈ R is the cofactor. From the previous equality we obtain

a0 = a3 = b0 = b3 = 0, b0 = 2a1, b1 = 2a0, b2 = 2a1, k = 2a1.
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If a1 = 0 by direct computations the function H (x, y, z) = H = x2 − y is a
first integral of system (8).

The proof of statement (a) is given in the proofs of statements (a) of
Theorem 1.

Assume a1 = 0 and a0 6= 0. Then the differential system (8) does not have
equilibria and all orbits are homeomorphic to a straight line paralell to the
z-axis, as explained it has been explaned in the proof of statement (b.1) of
Theorem 1. So statement (b) follows. Assume that a1 > 0 and c3 6= 0. Then
the differential system (8) has the unique equilibrium point p (defined in the
statement of the theorem). The equilibrium p lives on the invariant parabolic
cylinder x2− y = 1. The differential system (8) restricted to the this cylinder
becomes

ẋ = a0 + a1x,

ż = c0 + c1x+ c2(x2 − 1) + c3z,
(12)

after subtituting y = x2 − 1. The Jacobian matrix of the differential system
(12) at the equilibrium p has eigenvalues a1 and c3. So statement (c.1) follows.

The proof of statement (c.2) is the same than the proof of statement (b.1)
of Theorem 1. This completes the proof of the theorem.

Proof of Theorem 4. The polynomial differential system (5) having the
invariant parabolic cylinder f = x2 − y− 1 = 0, must satisfy the equality (3),
i.e.,

2x(a0 + a1x+ a2y + a3z)− (b0 + b1x+ b2y + b3z)

= (k0 + k1x+ k2y + k3z)
(
x2 − y − 1

)
,

where k0 + k1x + k2y + k3z, with k0, k1, k2, k3 ∈ R is the cofactor. From the
previous equality we obtain

a2 = a3 = b3 = k1 = k2 = k3 = 0, b1 = 2a0, b2 = 2a1, b0 = b2, k0 = b2.

Therefore the differential system (9) is obtained.

If b2 = 0, the function H (x, y, z) = H = x2 − y is a first integral of the
system (9), because the cofactor of f = 0 is zero.

If b2 = 0 and a0 6= 0 this system does not have equilibria and all the orbits
start and end at infinity, using the arguments in the proof of statement (b.1)
of Theorem 1. Statement (a.1) is proved.



polynomial differential systems in R3 137

The proofs of statement (a.2) are given in the proof of Theorem 2 with a2 =
0. If b2 > 0, c9 6= 0 and B > 0, then on the parabolic cylinder x2 − y − 1 = 0
there are the two equilibria P1 and P2 defined in the statement of the theorem.
The eigenvalues of P1 are b2/2 and −

√
B/b42, so P1 is a hyperbolic saddle. The

eigenvalues of P2 are b2/2 and
√
B/b42, hence P2 is a hyperbolic unstable node.

On this parabolic cylinder we can apply the arguments of the proof of Theorem
2 for proving the non-existence of periodic orbits. So statement (b.1) follows.
If b2 > 0, c9 6= 0 and B = 0, then system (9) has on the parabolic cylinder
H = 0 only the equiilibrium point P . This equilibrium point P has eigenvalues
0 and b2/2, i.e., P is a semi-hyperbolic equilibrium point. By [5, Theorem
2.19] P is a saddle-node. Since the topological index of a saddle-node is zero,
the differential system restricted to the invariant parabolic cylinder can not
have periodic orbits, because a periodic orbit must surround equilibria with a
total index equal to one, for instance this result is a corollary of [5, Proposition
6.26]. Hence statement (b.2) is proved.

If b2 > 0, c9 6= 0 and B < 0, then system (9) has no equilibria on x2−y = 1,
and all orbits on x2−y = 1 start and end at infinity, using previous arguments.
This completes the proof of statement (b.3). If b2 > 0 and c9 = 0, then on
the parabolic cylinder x2 − y = 1 = 0 there is a unique equilibrium point
Q. The eigenvalues of Q are b2/2 and D/b22, consequently Q is a saddle if
D > 0 and an unstable node if D > 0. Using the arguments of the proof of
the case b2 > 0, c9 6= 0 and B > 0 on the hyperbolic cylinder there are no
periodic orbits. Hence statement (b.4) follows. This completes the proof of
the theorem.

Proof of Theorem 5. A linear differential system (4) having the invariant
elliptic cylinder f = f (x, y, z) = x2 + y2 + 1 = 0 must satisfy the equality (3),
i.e.,

2x (a0 + a1x+ a2y + a3z) + 2y (b0 + b1x+ b2y + b3z) = k
(
x2 + y2 + 1

)
,

where k ∈ R is the cofactor, because the differential system (4) has degree
one. From the previous equality we obtain

a0 = a1 = a3 = b0 = b2 = b3 = k = 0, b1 = −a2.

Substituting these values in the differential system (4), we obtain the differ-
ential system (10) of the statement of Theorem 5. Using (2) we obtain that
H = H (x, y, z) = x2 + y2 is a first integral of the system (10). So all elliptic
cylinders H = h with h > 0 are invariant, and also is invariant the z-axis
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when H = 0. The proof of statement (a) is given in the proofs of statements
(a) of Theorem 1.

We write the differential systems (10) in cylindrical coordinates (r, θ, z)
where x = r cos θ, y = r sin θ, and we obtain the differential system

ṙ = 0,

θ̇ = −a2,

ż = c0 + c1r cos θ + c2r sin θ + c3z.

The restriction of this differential system on H = h taking θ as the new
independent variable becomes the differential equation

dz

dθ
= c0 + c1

√
h cos θ + c2

√
h sin θ + c3z. (13)

Assume h > 0 and c3 6= 0. Then the solution z(θ, z0) of the differential
equation (13) such that z(0, z0) = z0 is

z(θ, z0) =
e
− c3θa2 (a22c0−a2c2c3

√
h+c0c

2
3+c1c

2
3

√
h+(a22c3+c33)z0)

c3(a22+c23)
c0

(
a2

2 + c2
3

)
− c3

√
h
(
(a2c1 + c2c3) sin θ + (c1c3 − a2c2) cos θ

)
.

Therefore on the cyclinder H = h there is a unique periodic orbit z(θ, z0)
when

z0 = −a
2
2c0 − a2c2c3

√
h+ c0c

2
3 + c1c

2
3

√
h

a2
2c3 + c3

3

.

The rest of statement (b.1) follows.
Assume h > 0, c3 = 0 and c0 6= 0. Then the solution z(θ, z0) of the

differential equation (13) such that z(0, z0) = z0 is

z(θ, z0) =
−c2

√
h+ a2z0 − c0θ +

√
h(c2 cos θ − c1 sin θ)

a2
. (14)

So, clearly the orbits on the cylinder H = h start end end at infinity. State-
ment (b.2) is proved.

Assume h > 0 and c3 = c0 6= 0. From (14) it follows that all the orbits on
the cylinder H = h are periodic. Statement (b.3) is proved.

Assume h = 0 and c3 6= 0. Then the solution z(θ, z0) of the differential
equation (13) such that z(0, z0) = z0 is

z(θ, z0) =
e−c3θ/a2(c0 + c3z0)− c0

c3
.
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Therefore on the invariant z-axis there is the equilibrium point p = (0, 0,
−c0/c3), and two orbits that either start at p and end at infinity, or start at
infinity and end at p. Statement (b.4) follows.

Assume h = 0, c3 = 0 and c0 6= 0. Then the solution z(θ, z0) of the
differential equation (13) such that z(0, z0) = z0 is

z(θ, z0) = z0 −
c0θ

a2
. (15)

Hence on the invariant z-axis there is a unique solution that starts and ends
at infinity. So statement (b.5) is proved.

Assume h = 0, c3 = c0 = 0. Then form (15) the invariant z-axis if filled
with equilibria. Statement (b.6) is proved. This completes the proof of the
theorem.

Proof of Theorem 6. The polynomial differential system (11) having the
invariant elliptic cylinder f = f (x, y, z) = x2 + y2 − 1 = 0 must satisfy the
equality (3), i.e.,

2x(a0 + a1x+ a2y + a3z) + 2y (b0 + b1x+ b2y + b3z)

= (k0 + k1x+ k2y + k3z)
(
x2 + y2 − 1

)
,

where k0 + k1x+ k2y+ k3z, with k0, k1, k2, k3 ∈ R is the cofactor, because the
differential system (11) has degree two. From the above equality, we get

a0 = a1 = a3 = b0 = b2 = b3 = k0 = k1 = k2 = k3 = 0, b1 = −a2.

Substituting these values into the differential system (5), we obtain the dif-
ferential system (11) of the statement of Theorem 6.

Using (2) we obtain that H = H (x, y, z) = x2 + y2 is a first integral of the
differential system (11). So all elliptic cylinders H = h > 0 are invariant, and
also are invariant the z-axis H = 0.

If a2 = 0 then the differential system (11) coincides with the differential
system (7), so statement (a) is proved.

If a2 > 0, h = 0, c9 6= 0 and c2
3 − 4c0c9 > 0, every one of the invariant z-

axis is formed by five orbits, two of them are the equilibria P1 and P2 (defined
in the statement of the theorem). This five orbits are: one orbit starting at
infinity and ending in Pi, the orbit Pi, the orbit starting in Pj with j 6= i and
ending in Pi, the orbit Pj , and the orbit starting in Pj and ending at infinity.
Statement (b.1) is proved.
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If a2 > 0, h = 0, c9 6= 0 and c2
3 − 4c0c9 = 0, then the invariant z-axis

is formed by three orbits, one of them is the equilibrium p (defined in the
statement of the theorem). This three orbits are: one orbit starting at infinity
and ending in p, the equilibrium p, and the orbit starting in p and ending at
infinity. So statement (b.2) follows.

If a2 > 0, h = 0, c9 6= 0 and c2
3 − 4c0c9 < 0, then the invariant z-axis is

formed by a unique orbit starting and ending at infinity. So statement (b.3)
is proved.

If a2 > 0, h = 0, c9 = 0 and c3 6= 0, then on the invariant z-axis there is
the equilibrium q (defined in the statement of the theorem). Then, clearly this
invariant straight line is formed by three orbits, one of them is the equilibrium
point q and the other two either start at infinity and end at the equilibrium
point q, or start at the equilibrium point and end at infinity. Statement (b.4)
follows.

Assume a2 > 0, h = 0, c9 = c3 = 0. Then it is easy to verify that the
differential system (11) has the z-axis filled with equilibria. So statement (b.5)
is proved.

Assume h > 0. Then on the elliptic cylinders H = h there are no equilibria.
Therefore using the arguments of the proof of statement (b.1) of Theorem 1
statement (b.5) follows. Hence the proof of the theorem is done.
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