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Abstract: In this paper, we are interested in the study of certain operators in non-Archimedean
normed spaces of finite dimension. We introduce the notion of p-delta function, then we characterize
the simple operators, the similarities and the expansions. We show if E has an orthogonal basis,
then each injective operator on FE is the composition of an isometry and an expansion.

Key words: Non-Archimedean normed space; t-Orthogonal basis; p-delta function; Simple operator;
Similarity; Isometry; Expansion.

MSC (2020): 46510; 46B20.

1. INTRODUCTION

We consider the family of n-dimensional non-Archimedean normed spaces
over a non-Archimedean valued field K. We discuss some geometrical aspects
of these spaces related to the notions of orthogonality and t-orthogonality.
Then, we study some particular and important operators on these spaces. It
is very known that all n-dimensional non-Archimedean normed spaces over K
are linearly homeomorphic to K". And one of the fundamental facts in the
theory of non-Archimedean normed spaces states that every finite-dimensional
normed space over a spherically complete valued field K has an orthogonal
basis. But, if K is not spherically complete, finite-dimensional normed spaces
over K without any orthogonal basis exist [5, p. 68]. However, every finite-
dimensional normed space E over K admits a t-orthogonal basis (Theorem
. Therefore, using these geometrical aspects of finite-dimensional normed
space E over a non-Archimedean valued field K, we will introduce the notion
of p-delta function similarly to volume function, which is analogous to the
natural volume function in a real Hilbert space, introduced by van Rooij in
[6]. Then, we characterize three families of operators defined on E; namely,
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similarities, isometries and expansions.

For more details in non-Archimedean normed spaces, we refer to [3] , [4]
and [5]. And for more information on the subject, we refer to [I] and [2].

2. PRELIMINARIES

Throughout the present paper, K will denote a non-Archimedean com-
plete valued field with a non-trivial absolute value. K is said to be spherically
complete if every shrinking sequence of closed balls in K has a non-empty
intersection. Clearly the spherical completion implies completion, but the
converse is not true in general [4]. Normed spaces over K are defined in a nat-
ural way. We say that a norm || - || on a K-vector space F is non-Archimedean
if it satisfies the strong triangle inequality: ||z + y|| < max{|z|,|ly||} for all
z,y € B

We say that a normed space is non-Archimedean if its topology is defined
by a non-Archimedean norm.

Let E be a non-Archimedean normed space. E is spherically complete if
every shrinking sequence of closed balls in E has a non-empty intersection.
For any subset A of E, [A] will denote the linear hull of A in E.

Let t €]0,1], nonzero elements = and y of E are called t-orthogonal if
d(z,[y]) > t-||z|, where d(z,[y]) = inf{||x — 2| : z € [y]} is the distance
of x to [y]. We write xL,y. If ¢t = 1, we say that x and y are orthogonal,
and we write x Ly. We check easily that x Ly if, and only if, |ax + By|| >
t - max{|laz||, || By| } for each , B € K.

We say that a family of nonzero elements (z;);er of E is t-orthogonal if for
each i € I, x; Lz, for all j € I\{i}.

Clearly, (z;);es is t-orthogonal if, and only if, for each distinct iy, ..., i, €
I, and for each A1,..., Ay € K, || D 5y iy, || > t - maxy<p<p || Mgz, || If, in
addition, F = [z; : i € I], we say that (z;);es is a t-orthogonal basis of E.

If (z;)ier is a t-orthogonal basis of E, for every x € E, there is a unique
family (X\)ier € K' such that: x = Y",.; Aiz; and ||z > ¢ - supier||Aizi).-

We note that if (z;);er is a t-orthogonal family in E, then (x;);cs is a
linearly independent family; and if (\;)ier is a family of nonzero elements of
K, then (A\;x;);er is also a t-orthogonal family in E. In particular, if we take
m € K with 0 < || < 1, then we can choose (\;);er such that || < [[\z;]] <1
forall ¢ € I.

As a consequence, if (z;);cs is a t-orthogonal basis of F, without loss of
generality, we can suppose that (z;);er satisfies |7| < ||z;|| <1 for all ¢ € I.
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From now on, (E,|.||) will be a non-Archimedean normed space of dimen-
sion n > 2.
It is well known that:
(1) FE is linearly homeomorphic to K";
(2) E is a Banach space;
(3) All linear functionals f : E — K are continuous;
(4) All subspaces are closed.

An operator on E is a linear function T': F — E. All operators on E are
bounded.
We note S,, the set of all permutations o of {1,...,m} for each m > 2.

THEOREM 2.1. (PRINCIPLE OF VAN Roo1) Let t €]0,1], let x,y be ele-
ments of E such that ||z +y|| > ¢ ||z||. Then ||z +y| >t - ||y

Proof. See [4, Theorem 2.2.1]. 1

THEOREM 2.2. Let t €]0,1], let ey,...,e, be distinct non-zero vectors.
The following are equivalent:
(i) {e1,...,en} is a t-orthogonal system;
(ii) For all A,..., )\, € K, H 22:1 )\kekH >t- maxi<k<n ||)\k€k||7

(i) For all j € {1,...,n—1}, ejr1L¢fer, ..., €5l
Proof. Analogous to the proof of [4, Theorem 2.2.7]. 1

LEMMA 2.3. Let F' be a closed subspace of E and t €]0,1]. For each
a € E\F, there exists e € E such that: [a] + F = [e] + F and el F.

Proof. Let r = d(a, F). Since F is closed, > 0. Let z € F such that
la —z|| < %. Let e = a— z, then [a] + F = [e] + F. On the other hand,
dle,F)=d(a—z,F)=r>t]|e|.

For all z € F and A € K, ||Ae+ x| > d(Xe, F) = |A|d(e, F) > t- || Ae]l.
Then, by the van Rooij principle (Theorem[2.1)), [[Ae+z|| > ¢-max{||Xe]|, ||z]|}.
Hence, e, F. 1

Remark 2.4. (1) If e satisfies the conditions of the Lemma it is the
same for all Ae with A € K\{0}. Then, for all a €]0, 1], we can choose e such
that o < |le|| < 1.

(2) If F is spherically complete, we can choose e such that e LF'.
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Using this lemma, we prove the following interesting theorem, see [4, The-
orem 2.3.7| for another proof.

THEOREM 2.5. For each t €]0, 1], there exists {ey,...,e,} a t-orthogonal
basis of E.

Proof. Let e; € E\{0}, and set Fy = [e1]. Let a € E\F;. By Lemma[2.3]
there exists ea € E such that [a] + F1 = [e2] + F1 and d(ea, F1) > t - ||ez|.
Then, [a,e1] = [e1,e2] and ea L Fy. Hence, {e1,es} is a t-orthogonal system
in E. Now set Iy = [e1, e2]. If dim(E) > 2, there is b € E\ F», and by Lemma
there exists e3 € F such that [b] + F = [e3] + F» and d(es, F2) >t - ||es]|.
Then, [b, e1, ea] = [e1, e2,e3] and e3 L F>. Hence, {e1,e9,€3} is a t-orthogonal
system in E. Continuing like this we construct {ei,...,e,} a t-orthogonal
system in E. And the result follows since each t-orthogonal system in F is
linearly independent. 1

THEOREM 2.6. Let t €]0,1[, then each one-dimensional subspace of E is
t-orthocomplemented in E.

Proof. Let F = [x1] be a one-dimensional subspace of E. Using Lemma
as in the proof of Theorem [2.5] we construct {x1,...,z,} a t-orthogonal
basis of E. Then, G = [z3,...,2,] is an orthocomplement subspace of F' in

E. 1

THEOREM 2.7. If E has an orthogonal basis, then each one-dimensional
subspace of E is orthocomplemented in E.

Proof. Let {ej,...,e,} be an orthogonal basis of £ and F' = [z] a one-
dimensional subspace of E.
Let x = Z?:l )\iei with ||£C|| = Maxji<i<n H)\ZGZH = ||>‘jej|| (1 S] < ’I’L)

Let G = [e1,...,€j-1,€j41,...,en]. Foreachy =71, .. Ne; € G we
have:
[z =yl = 1(A1 —ar)er + -+ + (Ajm1 — aj—1)ej—1 + Aje;
+ (Njt1 —ajr1)ejn + o+ (An — a)en||
= max {[|(\1 — ar)erll,- ., [(Nj—1 = aj—1)ejlls [Ajesl,

11 = el [ = amdenll} = [Ajesll = ]



FINITE-DIMENSIONAL NON-ARCHIMEDEAN SPACES 259

Then, x 1 G. And
]+ G =[Me1+ ...+ en] + G =[ej] +[e1,....€j-1,€41,...,en] = E.

Therefore, GG is an orthocomplemented subspace of F'in E. |1

LeEMMA 2.8. Let F C G be two subspaces of E and w : E — E/F the
canonical surjection. On E/F we consider the non-Archimedean norm defined
as follows: ||m(x)||q = d(x, F'). Then, d(z,G) = d(n(z),n(G)) Vx € E.

Proof. Let x € E. It’s about showing:
a=inf o+ 2] = inf |7z +2)ll, = B

Let z € G, ||[m(z+2)||g = d(x+ 2, F) < ||z +z|. Then, f < a. To show a <
it suffices to check that for each r > 0, 8 < r = a < r. Let r > 0 such that
B < r. And let € > 0 such that g = inf,cq ||7(x + 2)|| = r — €. Then, there
exists z. € G such that ||7(x+2)|lq < B+€=1. So, d(z + 2, F') < r. Hence,
there exists y. € F' such that ||z + 2 +ye| < r. Since z. +y. € G, d(z,G) <.
Then, a < r, and the result follows. 1

An operator T on F is said simple if there exists a linear functional ¢ :
E — K and a vector z € F such that: Tz = x + p(z) - 2z for all z € E. Then,
we say that T is a (¢, z)-simple operator.

PROPOSITION 2.9. Let T be a (¢, z)-simple operator on E. Then, det(T")
=1+ ¢(z). Hence, T is a bijection if, and only if, p(z) # —1.

Proof. We have Tx = = + ¢(x).z for all x € E. If z = 0, then T = idg
and det(7T') = 1.

If 2z #0, let B =(z,22,...,2,) be a basis of E. The matrix of T in the
basis B is:

L+o(2) @(z) @z3) ... ... @(z)
0 1 0 ... ... 0
0 0
0
0 0 . ... 0

Therefore, det(T) =1+ ¢(z). 1
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We note that if 7' is not a bijective (g, z)-simple operator on FE, then
z € Ker(T).

Observe that elementary operations (on a fixed basis) are particular cases
of simple operators (in fact, simple operators have elementary matrices in
some basis). Moreover, it is trivial that any bijective operator in a finite-
dimensional vector space E is the composition of elementary operations (as
any invertible matrix can be reduced to the identity by multiplying by el-
ementary matrices, and the inverses of these elementary matrices are again
elementary). Therefore, it is evident that any bijective operator on E is the
composition of simple operators.

3. p-DELTA FUNCTIONS

For each p > 2 we define the p-delta function as follows:

p—1
S (ar, . mp) = [[ dl@i [wigr, - ) - llpll V... 2, € E.
=1

We easily verify that for each A € K, i € {1,...,p} and z1,...,2, € E

5%(1‘1, ey Lj—1, )\xiu$i+17 .. .,l‘p) == |>\| 5%(.%1, “. ,SL‘p)
and
P
(1, . zp) < H | ]].
i=1
PROPOSITION 3.1. Let x1,...,x, € E, then we have:

(1) &% (z1,...,2p) = 0 if, and only if, {z1,...,zp} is linearly dependent.
(2) &% (z1,...,2p) = [1P_ llzi|l if, and only if, {1, ... ,z,} Is an orthogonal

system.

Proof. (1) &% (x1,...,2p) = 0% ||xp|| = 0 or there exists i € {1,...,p—1}

such that d(x;, [zit1,...,2p]) =0 < x, = 0 or there exists ¢ € {1,...,p — 1}
such that z; € [ziq1,...,2p] & {21,...,2,} is linearly dependent.

(2) Suppose that 6%, (z1,...,xp) = [T0_ [|@il|. Since d(z;, [Tit1, ..., xp]) <
|lz;|| for all @ € {1,...,p — 1}, we must have d(z;, [ziy1,...,2p]) = ||;] for

all i« € {1,...,p —1}. Then, z; L [zt1,...,2p] for all i € {1,...,p — 1}.
Therefore, {z1,...,x,} is an orthogonal system.
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Conversely, if {x1,...,x,} is an orthogonal system , then
d(mi,[xiﬂ,...,:cp]): szH Vi€ {1,...,1)—1}.
Therefore, 0 (x1,...,2p) = [[0; [Ji]l. 1
As a consequence of Proposition we have &%, = 0 for all p > n.

PROPOSITION 3.2. Let t €]0,1]. If {ey,...,ep} is a t-orthogonal system
in F, then:

p
her, .. yep) = T el
=1

Proof. 6% (e1,...,¢ep) = f:ll d(ei, [€i+1,---,€p])-|le]lp. Foreachi=1,...,
p — 1 we have:

d(ei,eit1,...,ep]) = inf {

p
€i +Zj=i+1 )\Je]H : )\’i+1a" '7>\p S K}

Since {e1,...,ep} is a t-orthogonal system, e; L¢[€j1,...,¢ep] foralli=1,...,
p — 1. Then,

P P
€ + Zj:Hl )\jejH > t - max {HezH H Zj:i+1 )\jejH} >t el

Therefore, 6%, (e1,...,ep) > P T2, el 1

LEMMA 3.3. Let x,y € E, then §%(x,y) = 6%(y, ).

Proof. Let ®(u,v) = d(lllLft;[lzl)D for all u,v € F\{0}. It’s about showing
P(z,y) = 2y, ).
For this, it is enough to show

x =in lox + By| e
Blavy) =inf { T | o F SK\OH

For each a, € K\{0}}, we have:

o + Byl = d(ax, [By]) = ol d(z, [y]) = || [|«]|®(2,y) = [az|®(z,y).

Since ®(z,y) €]0, 1], by the van Rooij principle (Theorem [2.1)),

oz + By|| > ®(z,y) - max{[|az|, | By|}-
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lloz+By]|
Then, ®(z,y) < max (o153} Therefore,

el N+ Byl
f :
o) <t (G gty © 8 €K0)

On the other hand,

|
L2l 5 ewor)
|

D(z,y) = d(ﬁﬁ]) — inf { lz + Byl
. lo+ 8yl
- f{max{naxn,nﬁyu}‘ B € K\{0}

| o+ Byl }
f : .
=in {max{naxn,nﬁyu} o f € K\i0)

Then, ®(z,y) = inf{% :a, B € K\{0}}. And the result follows. I

PROPOSITION 3.4. Let x1,...,z, € E, then for each i € {2,...,p—1} we
have:
5%(.@1, sy Li— 1, L1y Liy L2 « - - 7xp) = 5%'(3717 cee 7xp)'
Proof. If one of the vectors x1,...,x, is null, the result is trivial. Then,

suppose all these vectors are nonzero. For i = p — 1, we have:
(@1, @ty Ty tp1) = [yt [{d(@r, [22, . 2p)) - (s, 23, 2))
Coo d(@p2, [, Tp1]) - d(p, [2p-1]) -

By Lemma 62 (Tp—1,Tp) = 0%(Tp, Tp_1), SO

@yl - d(zps [2p1) = lpll - dps, [2).
Then,
(1, 2y s pt) = [zl {d(r, [, ., )
oo d(@pog, [Tpo1, mp)) - d(zpoa, [er])}
= (5%(1‘1, ce ,a:p).

Now let i € {2,...,p — 2}:

(5%(331, ey Lj—13T45415 Ly Li42y + - - ,CCp)
= [lzplld(z1, (w2, ..., 2p]) - .o d(@iza, [, . ., Tp)])
. d(xi—i-l, [.%'i,iL‘H_g, e ,.Z'p]) . d(.ﬁlfi, [.I'Z'+2, . ,xp])

. d(xi+2, [x,-+3, . ,.%'p]) e d({L'p_l, [xp])
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Then it’s enough to show

d(xi-‘rlv [xia Tit2y .- 7xp])'d(xi7 [‘T’H—Qa ey xp])
= d(ﬂf“ [Ii-‘rh s 7$p]) : d(xi-i-ly [xi+2a sy J"p])
Let F = [zi12,...,2p] and consider the canonical surjection 7 : E — E/F"
d(xi-l-h [.’Ei,l’rH.Q, s 7xp]) ' d(xﬁ [xi+27 s 7'%'1)])

= d(xi_H, [.TZ] + F) . d(SUi, F)
d(m(xiy1), 7([xi] + F)) - d(7(zi), 7(F)) (Lemma
d(m(ziy1), [m(2)]) - d(m(zi), 7(F))

= [0gp(r(@iv1), 7(20) - I (@is1)llg] - 1w (2i)lq

= (0% p((xi), w(xis) - lw(@i)llg] - I (zir)llq

= d(7 (i), [7(zig1)]) - d(m(2iga), 7(F))

= d(m(z:), [r([xiga] + F)]) - d(7(ir1), 7(F))

= d(z;, [xi41]) + F) - d(zi11, F) (Lemma 2.8)
(

Ti, [Tig1, . 7xp]) d(Tig1, [Tigo, .. amp])'

I
.

And the result follows. 1
Remark 3.5. For each nonzero vectors x1,...,x, € E/, we have also:
o (a2, 21,23, . .., xp) = O (21, 22, . . ., Tp).

It’s enough to show:

d(zg, (1,23, ...,2p]) - d(z1, [23,. .., 2p])
=d(x1, [x2,...,xp]) - d(x2, [23,...,2p]).
We set F' = [x3,...,2p|, and we follow the same approach of the proof of
Proposition [3.4]
COROLLARY 3.6. For each nonzero vectors x1,...,r, € E and for each

permutation o € S, we have:

(5%(.%0(1), oo ,.%'U(p)> = (5%(331, cee ,a:p).
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PROPOSITION 3.7. Let x1,...,2, € E and \y,...,\, € K, then for each
ie{l,...,p} we have:

P
P _ p
6E(x1,...,xi_1, E i )\jl‘j,l'i_l,_l,...,xp) = [N 0 (21, .-, 2p).

Proof. Let i € {1,...,p}, then, by the definition of the p-delta function,
we have:

p
4 E
(5E<a:1,...,:17i_1, jzl)\jxj,xiﬂ,...,xp)

A
_ sP . . .
_5E(:1:1,...,xl_1, E i1 )\jx],mlﬂ,...,xp)
7
_ sP oL
—5E(a:1,...,aci_2, g i )\jafj,flfi_l,wi_t'_l,...,xp) (Proposition [3.4)
— " (z Ti o N + 271)\,A , A
= 0p Tyeoey Li—2, ALy =1 jLgy Li—1, Litly---,Tp
. PR VTR N P T (def. of %)
= 0p Tyeoey Li—2, ALy =1 jLgy Li—1, Litly---,Tp €. O E
i—2
_ sP
féE(xl,...,xi_g,)\ixi—i— E =1 )\jxj,$i_2,xi_1,xi+1,...) (PI‘Op. 3.4))
— " (x e Az S N o 1 (def. of &%)
=0g\T1,...,Ti-3, AT =1 jLjy Li—2y Li—15 Lit1,- -+, Tp eL.ol 0p
_517 T €T i i P Nl i .
= 0p 1y« sy Ti—1y AN, j=1 GL Gy Lid1y Li4-25 - -« 5 Tp
2
v
—5E($1,)\ifci+ E i1 ijj,l’z,l’?w--,fci—17$i+1,-~-7ﬂfp)
_ sP
= 0p(T1, Niwi + M1w1, 22,23, -+ Tim1, Tig1, -+ -, Tp)
_ sP
—5E()\il'i7$175172,$3,---,$i71,$i+17---7$p)
= |/\z| (5%(1’“%1,372,:133, ey Li—1, i1y - - - ,a;p) = ‘)\1’5%(.%1, ve ,a:p).

PROPOSITION 3.8. Let T' be a (p, z)—simple operator, then:
0p(Txy,...,Txy) = |det(T)| 0% (1, ..., 2pn) Vzi,...,2, € E.

Proof. Tx = x+p(x)-z forallz € E. Letzy,...,x, € E. If {z1,...,2,}1is
linearly dependent, then so is {T'z1, ..., Tz, } and the result follows easily. So,
we suppose that {z1,...,z,} is linearly independent, so it is a basis for E. If T’
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is not bijective, then det(7') = 14 ¢(z) = 0, and there exists © = Y " | \jz; €
E\{0}, (A1,...,A\n € K), such that Te = 0. Then > \Tz; = 0, and
{Tz1,...,Txy,} is linearly dependent. Therefore, 6% (Tz1,...,Tx,) = 0. Now
suppose that T is bijective, then det(T) = 1+ ¢(2) # 0. Let ag,...,a, € K
such that z = Y"1 | a;x;. For each i € {1,...,n} let 3; = ¢(x;);

det(T) =1+ o(z) —1—1—2 a;p(x;) —1—1—2 ;3.

For each i € {1,...,n},Tz; = x; + ¢(x;) - 2 = x; + f; - z. Then, it is about
showing that:

0p(z1 4+ b1z, ..., 20 + Bpz) = )1 + Z:;l i

S (21, ... ).

We can suppose, without loss of generality, that a; # 0 (otherwise, we can
make a permutation of the vectors x1, ..., x,);

n n n n
(1 + Zi:l 04251>Z = Zi:l ;T + Zi:l o; Bz = Zi:l Cki(l'i + Bzz)

Then, we have:

0p(Tw1, ..., Ten) = 0p(x1+ B12, .., 20 + Pn2)

1 5%(22;1 iz + Biz),xa + B2z, ..., oy + ﬂnz>

_@

5E< 1+Z a;fi)z, o + B2z, . xn+ﬁnz>

" ol

L+> 0 Q404
‘ izt il } 0p(z, 0 + B2z,..., &y + Bn2)
|ov |
| det(T)]
0p(z, 22, ..., op
|051‘ E( 2 )
|det(T)] , n
- |a1‘ 5E ( Zi:l Q;T5, T2, 71'71)
det
1S o (o)

= |det(T)| 6% (x1, 2, ..., xy).

THEOREM 3.9. Let T be an operator on E, then:

0p(Txy,...,Tay) = |det(T)|0% (21, ..., xp) Vzy,...,zy € E.
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Proof. Let x1,...,2, € E. We can assume that the operator T  is bi-
jective (otherwise, {Txy,...,Txy,} is always linearly dependent and hence
0p(Txy,...,Txy) is zero). There exist simple operators T, ..., T}, such that
T = Tme,1 cee Tl. Then

0p(Txy,...,Tay) =0 (TnTm-1--Thx1,. .., TTm—1--Tixy).
So, by Proposition [3.8] we have:
0p(Txy,...,Try)=|det(T)n)| 05 (Tm—1Tm—2---Tix1,..., Tn1Tim—2 - - - Thxy).
And applying the same result over and over we will get:

0p(Txy,...,Txy) = |det(Ty,)|- - | det(Th)| 0% (1, ..., xn)
= |det(T)| (1, ..., Tn).

4. SIMILARITIES

An operator T on F is said a similarity if there exist » > 0 such that:
|Tz|| = r|lz| for all € E. Then, we say that T is a r-similarity.
An isometry on F is a l-similarity. It is immediate that any similarity is a
bijective operator. If T" is an r-silimarity, then | T'|| = r and ||Tz| = ||T|| - ||z|]
for all z € FE.

PROPOSITION 4.1. Let t €]0,1] and T a similarity on E. If {ey, ..., en} is
a t-orthogonal basis in E, then so is {Te1,...,Tey}.

Proof. Let Ay,..., A\, € K:

|3 e = [ (32, xwe) | = 1 320, 2

> |7t - max [|Aze]| = ¢ - max [[T[[Aes]
1<i<n 1<i<n

=t T(Ne)| =t- NTe;ll.
fg%xn” (Aiei) | 122%” iTei|

Then, {Tey,...,Te,} is a t-orthogonal system in E. Hence, it is a t-orthogonal
basis in E. |1
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THEOREM 4.2. Let T be a bijective operator on . Then, we have:

(1) |det(T)] < IT[";
(2) |det(T)| = ||T||™ if, and only if, T' is a similarity.

Proof. (1) Let t €]0,1[. There exists {ei,...,e,} a t-orthogonal basis in
E (Theorem . By Proposition 6t (e1y. .. en) > t" 1T |leill. Then,

"1 | det(T)| Hi:l lleill < |det(T)|dg(er, ... en)
=0p(Tey,...,Tey)

n n
<TI, ired < Iz T lleal.

Then, t" ! det(T)| < ||T||™ for each t €]0,1]. Hence, |det(T)| < || T

(2) Assume that |det(T")| = ||T||". If T is not a similarity, there exists
e1 € E\{0} such that ||[Te1|| < ||T]|le1]]-

Let t €]0, 1] such that ||Tei| <"1 ||T| - |le1]|. Complete e; to obtain a
t-orthogonal basis {e1,...,e,} in E. Then, we have:

n n
0p(Ter,....Tea) <[ ITeill = ITer| [T ITe:l
_ n
< (" AT eal) TT,, 1Tl
_ n
=TT lleill < 171" 0% (e, - - en)-

Then, 6% (Teq,...,Te,) < |det(T)|0%(e1,. .., eyn), which is a contradiction.
Reciprocally, assume that 7' is a similarity. Let ¢ €]0,1[, and consider a
t-orthogonal basis {e1,...,e,} in E. By Proposition

n n
Sp(Ter,....Ten) > " [ |Teil =" 7 TT lledl

n
= [det(T)| 8 (er,en) 2 TP TT el

n— n H:L: HeZH n— n
= [det(T)] 2 (" ITI") 5 =0 = [ det(T)] > T

this being for all ¢ €]0,1[, then |det(T")| > ||T||". Therefore, |det(T)| =
(NS |
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THEOREM 4.3. Let T' be an operator on E. Then, T is an isometry if,
and only if, |T|| = |det(T)| = 1.

Proof. Suppose that T' is an isometry, then by Theorem |det(T)| =

|T||™ = 1. Then, ||T|| = |det(T)| = 1.
Reciprocally, assume that ||T'|| = |det(T")| = 1. It is about showing that

|Tx|| = ||z|| for all z € E. Suppose that there exists e; € E\{0} such that
|Te1] < |le1|l- Let t €]0,1] such that || Te1|| < t"!{le1]|, and complete e; to
obtain a t-orthogonal basis {ej,...,e,} in E. Then, we have:
ST(er, . en) = —— W (Tey, ..., Tey)
| det(T)]

n
= 6%(T617 s 7Ten) < Hi:l HTezH
n _ n
el [T ITedl < ¢ flea TT, 1Tl es)

n
= "' [L_, leil < 6ien,.. en),

which is a contradiction. |}

5. EXPANSIONS

An operator T on FE is said an expansion if there exists a basis {ej1,...,e,}
in E and Aq,...,\, € K such that: Te; = \je; for alli =1,...,n.

THEOREM 5.1. Let t €]0,1], E and F be two non-Archimedean normed
spaces of dimension n > 2 each having a t-orthogonal basis, and T : E — F a

nonzero operator. Then, there exist a nonzero vector e in E and a subspace
G of E such that:

() el T(Hllel < [ITell < Il lell;
(2) elpG;

Proof. Let t €]0,1], and consider {z1,...,z,} a t-orthogonal basis in F

and {y1,...,yn} a t-orthogonal basis in F. Set § = maxj<;<y, % = ”ﬁgi’““”

(ke{l,....,n}); 0 <|T].
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Let e = xp. For each Aq,..., A\, € K, we have:

KOPERY

< Ail || Tz
| < max (A 1T )

1) n
<6 max (Nl floil) < 5 H S |

1<i<n

Then, | T| < ¢, and & < ||| < ¢. Hence, ¢|T|[le]| < |Te|| < [T]le]-

It is clear that || Te|| # 0, otherwise | Tx;|| =0 foralli=1,...,n,and T =
0. By Theorem the subspace [T'e] admits a t-orthogonal complement in
F. Let H be this t-orthogonal complement, F' = [Te] ®; H. Set G = T~(H).
Then, G is a subspace of ¥ and Tel,TG.

For each y € G, Ty € H and we have:

[Te+ Tyl ¢ max(Tel, [Tyl) I Tel , ,tITle]
71 7] 7l =

le+yll > = t*|le]|.

Hence, el 2G.
For t = 1, we apply the Theorem [2.7] for orthogonal bases with the same
reasoning. Then, we have:

() [ Tell = IT1ell;
(2) elG;
(3) TelTG. 1

Remark 5.2. If the operator T is bijective, then the subspace G is of
dimension n — 1.

THEOREM 5.3. Let t €]0,1], E and F' be two non-Archimedean normed
spaces of dimension n > 2 each having a t-orthogonal basis, and T : E — F
an injective operator. Then, there exists {ei1,...,e,} a t-orthogonal basis of
E such that {Tey,...,Te,} is a V/t-orthogonal basis of F.

Proof. Let t €]0,1[. By Theorem there is e, € E\{0} and a subspace
G,—1 of E such that:

VHITlleall < I Tenll < I Tllllenll,  enliGuo1, Tenl ;TG

and dim(Gp-1) = n — 1. By applying the theorem again to T,,—1 = Tig,_,,
there exist e,_1 € G,,—1\{0} and a subspace G,,_3 of G,,—1 such that:

V| Tu-illllen—ill < 1Ta-ren—1ll < [Ta-1llllen—ll;
en—1LiGn—2, Th-1en-1L fTn—1Gn—2
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and dim(G,—2) = n — 2. And by continuing in this way, we will have the
existence of a sequence of subspaces £ = G, D --- D Gp, dim(Gg) = k
(1 <k <n),and e € G,\{0}, (2 <k <n) such that:

V| Tillllexll < [ Teewll < | Tullllexll,  exLeGror,  TherL zTeGr-1,
with Ty = Tig, (2 <k <n-—1). Let e € G1\{0}, then G; = [e1]. By
Theorem {e1,...,en} is a t-orthogonal basis of E and {Tey,...,Te,} is
a v/t-orthogonal basis of F.

For t = 1, the same reasoning gives us the existence of an orthogonal basis
{e1,...,en} of E such that {Tey,...,Te,} is an orthogonal basis of F. |

THEOREM 5.4. If E has an orthogonal basis and ||E|| C |K|, then each
injective operator on E is the composition of an isometry and an expansion.

Proof. By Theorem there exists an orthogonal basis {ej,...,e,} of E
such that {Tej,...,Te,} is an orthogonal basis of E. For each i € {1,...,n},
let \; € K such that |Te;|| = |\, and set z; = )\%Tei; {#z1,...,2n} is an
orthogonal basis of E. Let U and V' be the operators on E defined by:

Ue; =2z and Vz = Nz foralli=1,...,n.
It is clear that V is an expansion. And for each x =) " | aye; € E, we have:
n n
el = 5 ] =[5
Then, U is an isometry.
n n n
VU(z) = V<Zi:1 ozl-Uei) = V(Zi:1 aizi) = Zi:l o;Vz;
n n n
= Zi:l ai)\izi = Zi:l aiTeZ- = T( Zi:l aiei> = T(l‘)

Then, T=VU. 1

= max [a;| = [|z]|.
1<i<n

ACKNOWLEDGEMENTS

The author especially thanks the referee for his valuable remarks and
suggestions in preparing this paper.



FINITE-DIMENSIONAL NON-ARCHIMEDEAN SPACES 271

REFERENCES

[1] J. CABELLO SANCHEZ, J. NAVARRO GARMENDIA, Isometries of
ultrametric normed spaces, Ann. Funct. Anal. 12 (2021), 11 pp.,
DOI: 10.1007/s43034-021-00144-7.

[2] A. KUBZDELA, Isometries, Mazur-Ulam theorem and Aleksandrov
problem for non-Archimedean normed spaces, Nonlinear Analy-
sis:  Theory, Methods and Applications, 75, pp. 2060-2068 (2012)
DOI: 10.1016/j.na.2011.10.006,

[3] A.F. MONNA, Analyse Non-archimédienne, Berlin-Springer (1970).

[4] C. PEREzZ-GARCiA, W.H. SCHIKKOF, Locally Convex Spaces over non-
Archimedean valued fields, Cambridge Studies in Advanced Mathematics 119,
(2010).

[5] A.C.M. vaN R0OO1J, Non-Archimedean Functional analysis, New York, Dekker,
(1978).

[6] A.C.M. vaN Roo1J, Notes on p-Adic Banach Spaces, Report 7633, Math. Inst.
Kathol. Univ. Nijmegen, (1976).


https://doi.org/10.1007/s43034-021-00144-7
https://doi.org/10.1016/j.na.2011.10.006.

	Introduction
	Preliminaries
	p-delta functions
	Similarities
	Expansions

