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Abstract : In this paper, we will prove a spectral theorem for self-adjoint compactoid operators.

Also, we will study the condition on which the coefficient field must be imposed. In order to get
the theorems, we will use the Fredholm theory for compactoid operators. Moreover, the property of

maximal complete field is important for our study. These facts will allow us to find that the spectral

theorem depends only on the residue class field, and is independent of the valuation group of the
coefficient field. As a result, we can settle the problem of the spectral theorem in the case where the

residue class field is formally real.
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1. Introduction and preliminaries

1.1. Introduction The spectral theory on non-Archimedean functional
analysis has been studied by many researchers. In this paper, we will prove
the spectral theorem of self adjoint compactoid operators in the case where the
residue class field is formally real (Theorem 3.5, Theorem 3.6, Corollary 3.7).
This claim was proposed in [2, Theorem 4.3], but the proof makes mistakes
and the claim must be modified. We will give a correct proof and the exact
condition in Section 3.

For the study of the spectral theorem of compactoid operators, the Fred-
holm theory of compactoid operators (see [10]) will play an important role.
Schikhof proved that if the coefficient field is algebraically closed, a compactoid
operator is a spectral operator ([10, Definition 6.5]).

In [10, section 6], the coefficient field is assumed to be algebraically closed,
but the assumption seems too strong for some results. Therefore, we will
modify this theory to remove the assumption that the coefficient field is alge-
braically closed. In Section 5, we summarize the discussion as an appendix.
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As a result, we can apply the method of operator analysis to the spectral
theory if the coefficient field K satisfies the condition (H)K (see Section 3),
which is the condition on the diagonalization of a symmetric matrix.

In Section 4, we will study the condition (H)K . Keller and Ochsenius found
that a symmetric matrix over R((t)) can be diagonalized by an orthogonal
matrix (see [6]). In this paper, we will extend this fact (Theorem 4.2), and
get Corollary 4.4. For the proof, we will use the spherical completion (c.f.
[12]), and the property of maximally complete field ([5]).

1.2. Preliminaries In this paper, K is a non-archimedean non-trivially
valued field which is complete under the metric induced by the valuation
| · | : K → [0,∞). A unit ball of K is denoted by BK := {x ∈ K : |x| ≤ 1}.
We denote by k the residue class field of K.

Throughout, (E, ∥ · ∥) is a non-archimedean Banach space over K. Let
a ∈ E, r > 0, we write BE(a, r) for the closed ball with radius r about
a, that is, BE(a, r) := {x ∈ E : ∥x − a∥ ≤ r}. For a subset X ⊆ E, we
denote by [X] the K-vector space generated by X. Let t ∈ (0, 1]. A sequence
(xn)1≤n≤N ⊆ E \ {0}, N ∈ N ∪ {∞}, is said to be a t-orthogonal (orthogonal
for t = 1) if for each sequence (λn)1≤n≤N ⊆ K, the inequality

t · max
1≤i≤N

∥λixi∥ ≤
∥∥∥∑N

i=1
λixi

∥∥∥
holds.

A subset A of E is said to be a compactoid if for every r > 0, there exist
finite elements a1, . . . , an of E such that A ⊆ BE(0, r) +BKa1 + · · ·+BKan.

Let (F, ∥ · ∥) be a non-archimedean Banach space, we denote by L(E,F )
the Banach space consisting of all continuous maps from E to F with the
usual operator norm. If (E, ∥ · ∥) = (F, ∥ · ∥), we write L(E) := L(E,F ). An
operator T ∈ L(E,F ) is said to be a compactoid operator if T (BE(0, 1)) is a
compactoid. For details of compactoid operators, see [9, 10, 12].

For T ∈ L(E), we define a spectrum of T as

σ(T ) := {λ ∈ K : λI − T is not invertible},

where I ∈ L(E) is the identical operator on E, and we write

σp(T ) := {λ ∈ K : Ker(λI − T ) ̸= 0}

for eigenvalues of T . Also, we set

UT := {λ ∈ K : I − λT is invertible},
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and
DT :=

{
r ∈ |K| : r ̸= 0, BK(0, r) ⊆ UT

}
.

Let r ∈ |K|, r ̸= 0. A function f : BK(0, r) → E is said to be analytic if
there exists a sequence a0, a1, a2, . . . ∈ E such that limn→∞ ∥an∥rn = 0, and
f can be represented by

f(λ) =
∑∞

n=0
anλ

n
(
λ ∈ BK(0, r)

)
.

2. Non-Archimedean inner product on c0

Let (c0, ∥ · ∥) be the Banach space of all null sequences x = (xn)n∈N in K,
and ∥x∥ := supn∈N |xn|. There exists a symmetric bilinear form ⟨·, ·⟩ on c0
defined by

⟨x, y⟩ :=
∑

n∈N
xnyn

where x = (xn), y = (yn) ∈ c0.
We denote by e1, e2, . . . ∈ c0 the canonical unit vectors. Then, an operator

T ∈ L(c0) can be written as a pointwise convergent sum

T =
∑

i,j
ai,j · (e′j ⊗ ei)

where e′j⊗ei(x) := ⟨ej , x⟩ei. Applying this representation, we can characterize
compactoid operators.

Theorem 2.1. (c.f. [9, Theorem 8.1.9]) Let T =
∑

i,j ai,j · (e′j ⊗ ei) ∈
L(c0). Then T is a compactoid operator if and only if limi→∞ supj |ai,j | = 0.

Definition 2.2. We say that T ∈ L(c0) admits an adjoint operator S ∈
L(c0) if for each x, y ∈ c0, S satisfies

⟨T (x), y⟩ = ⟨x, S(y)⟩.

If T admits an adjoint operator S, then, since S is uniquely determined by T ,
we write T ∗ := S.

It is easy to see that T =
∑

i,j ai,j · (e′j ⊗ ei) admits an adjoint operator
if and only if for each i ∈ N, we have limj ai,j = 0. If T admits an adjoint
operator T ∗, then T ∗ can be represented by

T ∗ =
∑

i,j
aj,i · (e′j ⊗ ei),

and ∥T ∗∥ = ∥T∥. From Theorem 2.1, we have the following theorem.
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Theorem 2.3. Let T =
∑

i,j ai,j · (e′j ⊗ ei) ∈ L(c0). Then, T is a com-
pactoid operator which admits an adjoint operator if and only if

lim
n→∞

sup
n<i,j

|ai,j | = 0.

In general, the symmetric bilinear form ⟨·, ·⟩ on c0 does not satisfy the
equality ∥x∥2 = |⟨x, x⟩|. On the other hand, if the residue class field k of K
is formally real, ⟨·, ·⟩ induces the norm ∥ · ∥ on c0 (see [7]).

Definition 2.4. A field F is called formally real if for any finite subset
(ai)1≤i≤n ⊆ F ,

∑
1≤i≤n a

2
i = 0 implies ai = 0 for each i.

Theorem 2.5. ([7, Theorem 6.1]) Suppose the residue class field k of
K is formally real. Then, we have ∥x∥2 = |⟨x, x⟩| for each x ∈ c0.

From now on, in this section, we suppose that the residue class field k of
K is formally real.

Definition 2.6. A subsetX ⊆ c0 is called orthonormal if for each distinct
pair x, y ∈ X, we have ⟨x, y⟩ = 0.

Theorem 2.7. ([7, Theorem 3.1]) Suppose that the residue class field
k of K is formally real. Then, an orthonormal subset X ⊆ c0 is orthogonal,
that is, for any finite distinct elements x1, x2, . . . , xn ∈ X, the equality

max
1≤i≤n

∥λixi∥ =
∥∥∥∑n

i=1
λixi

∥∥∥ (λ1, λ2, . . . , λn ∈ K)

holds.

By the Gram-Schmidt procedure, we have the following theorem.

Theorem 2.8. ([7, Section 7]) LetM ⊆ c0 be a finite-dimensional sub-
space. Then, there exists a basis {x1, . . . , xn} ⊆ M as a K-vector space such
that it is an orthonormal set.

Definition 2.9. Let X ⊆ c0. We denote by X⊥ := {y ∈ c0 : ⟨x, y⟩ = 0
for each x ∈ X} the normal complement of X. A closed subspace M ⊆ c0 is
called normally complemented if M ⊕M⊥ = c0.

Even if k is formally real, there exists a closed subspace M ⊆ c0 which is
not normally complemented ([7, Remark 9.1]). On the other hand, if M is
finite-dimensional, it is normally complemented.
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Theorem 2.10. ([7, Corollary 8.2]) Let M ⊆ c0 be a finite-dimen-
sional subspace. Then, M is normally complemented.

We introduce a normal projection to characterize whether a closed sub-
space is normally complemented.

Definition 2.11. ([1, Definition 6]) An operator P ∈ L(E) is called
a normal projection if P 2 = P and P ∗ = P .

Theorem 2.12. ([1, Corollary 3]) Let M ⊆ c0 be a closed subspace.
Then, M is normally complemented if and only if there exists a normal pro-
jection P onto M .

Theorem 2.13. Let M ⊆ c0 be a finite-dimensional subspace, and let
{x1, . . . , xn} ⊆ M be an orthonormal basis. Then, the normal projection P
onto M can be represented by

P (x) =
n∑

i=1

⟨x, xi⟩
⟨xi, xi⟩

xi.

Proof. For each j (1 ≤ j ≤ n), we have

P (xj) =
n∑

i=1

⟨xj , xi⟩
⟨xi, xi⟩

xi = xj .

Therefore, we get P 2 = P . Moreover, for each x, y ∈ c0, we have

⟨x, P (y)⟩ = ⟨x,
n∑

i=1

⟨y, xi⟩
⟨xi, xi⟩

xi⟩ =
n∑

i=1

⟨x, xi⟩ · ⟨y, xi⟩
⟨xi, xi⟩

= ⟨P (x), y⟩,

which implies P ∗ = P . Thus, the proof is complete.

3. The spectral theorem

In this section, suppose that the residue class field k of K is formally real.
We say that an operator T ∈ L(c0) is self-adjoint if T admits an adjoint
operator T ∗, and T = T ∗. We can prove the following propositions by the
classical way.

Proposition 3.1. Let T ∈ L(c0) be a self-adjoint operator. Then, ∥T 2∥
= ∥T∥2. In particular, the equality limn→∞ ∥Tn∥1/n = ∥T∥ holds.
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Proof. The inequality ∥T 2∥ ≤ ∥T∥2 is clear. On the other hand, we have

∥T∥2 = sup
∥x∥≤1

∥T (x)∥2 = sup
∥x∥≤1

|⟨T (x), T (x)⟩| = sup
∥x∥≤1

|⟨T ∗T (x), x⟩|

≤ sup
∥x∥,∥y∥≤1

|⟨T ∗T (x), y⟩| = ∥T ∗T∥ = ∥T 2∥.

Therefore, we get the equality ∥T 2∥ = ∥T∥2. Moreover, we have

lim
n→∞

∥Tn∥1/n = lim
n→∞

∥∥T 2n
∥∥1/2n = ∥T∥,

which completes the proof.

Proposition 3.2. Let T ∈ L(c0) be a self-adjoint operator, and M ⊆ c0
be a closed subspace that is normally complemented. Then, T (M) ⊆ M if
and only if TP = PT where P is a normal projection onto M . In particular,
T (M) ⊆ M implies T (M⊥) ⊆ M⊥.

Proof. Let P be a normal projection onto M . If TP = PT , then we have

T (x) = TP (x) = PT (x) ∈ M for each x ∈ M,

hence T (M) ⊆ M . Conversely, suppose T (M) ⊆ M . Then, for each x ∈ M⊥,
y ∈ M , we have ⟨y, T (x)⟩ = ⟨T (y), x⟩ = 0. Since y ∈ M is arbitrary, we
obtain T (x) ∈ M⊥, hence T (M⊥) ⊆ M⊥. For each z ∈ c0, we have the trivial
equality

PT (z) + (I − P )T (z) = T (z) = TP (z) + T (I − P )(z).

Now, from T (M) ⊆ M and T (M⊥) ⊆ M⊥, it follows that TP (z) = PT (z).

Proposition 3.3. Let T ∈ L(c0) be a self-adjoint operator, and let λ1,
λ2 ∈ σp(T ) be distinct elements. Then, for each x1 ∈ Ker(λ1I − T ), x2 ∈
Ker(λ2I − T ), we have ⟨x1, x2⟩ = 0.

For a formally real field F , we consider the condition (H)F :

(H)F For each n ∈ N and each symmetric matrix A ∈ Mn(F ), A is diagonal-
izable over F ,

where Mn(F ) is the set of all n-dimensional square matrices over F .
Before proving the main theorems, we recall Fredholm’s Alternative for

compactoid operators presented in [10].
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Proposition 3.4. ([10, Corollary 3.3, Theorem 5.6]) Let T ∈ L(E)
be a compactoid operator. Then, we have the following:

(1) If λ ∈ σ(T ), λ ̸= 0 then λ ∈ σp(T ) and Ker(λI−T ) is finite-dimensional.

(2) If λ1, λ2, . . . ∈ σ(T ) are distinct, then limn→∞ λn = 0.

In addition to the above proposition, we use the results of Section 5 for
the proof of the main theorems. For details, see Section 5.

Theorem 3.5. Suppose that the residue class field k of K is formally
real, and K satisfies the condition (H)K . Let T ∈ L(c0) be a self-adjoint
compactoid operator. Then, we have the following:

(1) If K is densely valued, then we have

∥T∥ = max{ |λ| : λ ∈ σp(T )}.

(2) If K is discretely valued, then we have

∥T∥ ≤ |π|−1max{ |λ| : λ ∈ σp(T )}

where π ∈ BK is a generating element of a maximal ideal of BK .

Proof. We write T :=
∑

i,j ai,j · (e′j ⊗ ei), and let Tn :=
∑

1≤i,j≤n ai,j ·
(e′j ⊗ ei). Then by Theorem 2.3, we have limn→∞ ∥Tn − T∥ = 0. Moreover, it
follows from the condition (H)K that for each n ∈ N and each r ∈ DTn , the
function

λ 7−→ (I − λTn)
−1

is analytic in BK(0, r). Therefore, combining these facts with Theorem 5.9,
we have that T1, T2, . . . and T satisfy the assumptions of Theorem 5.3. Hence,
by Corollary 5.4, we have the following:

(1) If K is densely valued, then limn→∞ ∥Tn∥1/n = supλ∈σ(T ) |λ|.

(2) If K is discretely valued, then limn→∞ ∥Tn∥1/n ≤ |π|−1 supλ∈σ(T ) |λ|.

Moreover, it follows from Proposition 3.1 that limn→∞ ∥Tn∥1/n is equal to
∥T∥, and by Proposition 3.4, we have supλ∈σ(T ) |λ| = maxλ∈σp(T ) |λ|. This
completes the proof.
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Theorem 3.6. With the same assumptions as those of Theorem 3.5, there
exist an orthonormal sequence x1, x2, . . . ∈ c0 and (λn) ∈ c0 such that

T (x) =
∞∑
n=1

λn
⟨x, xn⟩
⟨xn, xn⟩

xn.

Proof. We may assume T ̸= 0. Then by Theorem 3.5, we have
σp(T ) \ {0} ≠ ∅. By Proposition 3.4, there exists a decreasing sequence
(rn)1≤n≤N (N ∈ N ∪ {∞}) of positive numbers such that

{ |λ| : λ ∈ σp(T ) \ {0}} = {rn : 1 ≤ n ≤ N}.

Moreover, we have limn→∞ rn = 0 if N = ∞.
For each n ∈ N, we put {λn1, . . . , λnmn} = {λ ∈ σp(T ) : |λ| = rn} and

Nn =
∑

1≤l≤n

∑
1≤k≤ml

Ker(λlkI − T ).

Then, we easily have T (Nn) ⊆ Nn. We shall prove the theorem in the case
N = ∞ (If N < ∞, the same discussion works). By Proposition 3.4, Nn

is finite-dimensional and therefore, it follows from Theorem 2.13 that there
exists a normal projection Pn onto Nn.

For each n ∈ N, by Proposition 3.2 and Proposition 3.3, we have

σp(T ) = σp(TQn) ∪ σp(TPn), σp(TQn) = σP (T ) \
( ⋃

1≤l≤n

⋃
1≤k≤ml

{λlk}
)

where Qn := I − Pn is a normal projection onto N⊥
n . Since PQn is a self-

adjoint compactoid operator, we have

∥TQn∥ ≤ C · max
λ∈σp(TQn)

|λ| ≤ Crn+1

by Theorem 3.5 where C is a suitable constant independent of n. In particular,
we obtain limn→∞ ∥TQn∥ = 0 and therefore, we have T (x) = limn→∞ TPn(x)
for each x ∈ c0.

Finally, for each l ∈ N, 1 ≤ k ≤ ml, let {xlkj : 1 ≤ j ≤ plk} be an or-
thonormal basis of Ker(λlkI−T ). Then by Theorem 2.13 and Proposition 3.3,
Pn(x) can be represented by

Pn(x) =
∑

1≤l≤n

∑
1≤k≤ml

∑
1≤j≤plk

⟨x, xlkj⟩
⟨xlkj , xlkj⟩

xlkj .
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Hence, we have

T (x) =

∞∑
l=1

∑
1≤k≤ml

∑
1≤j≤plk

λlk
⟨x, xlkj⟩

⟨xlkj , xlkj⟩
xlkj ,

which completes the proof.

Theorem 3.6 implies the following corollary which refines Theorem 3.5.

Corollary 3.7. With the same assumptions as those of Theorem 3.5,
if K is discretely valued, then we have

∥T∥ = max
λ∈σp(T )

|λ|.

Remark 3.8. Theorem 3.6 is the modified result of [2, Theorem 4.3]. The
condition (H)K is necessary for Theorem 3.6. Indeed, if K does not satisfy
the condition (H)K , there exist n ∈ N and a symmetric matrix A = (ai,j)i,j ∈
Mn(K) such that A is not diagonalizable over K. Let us define

T =
∑

i,j
bi,j · (e′j ⊗ ei) ∈ L(c0)

by

bi,j :=

{
ai,j if 1 ≤ i, j ≤ n,

0 otherwise.

Then, T is a self-adjoint compactoid operator but does not satisfy the conclu-
sion in Theorem 3.6.

Despite the counterexample above, the proof of [2, Theorem 4.3] is inde-
pendent of the condition (H)K . Hence, the proof makes a mistake. Specif-
ically, in the fifth step of the proof, it makes a fatal mistake. Similarly, the
proof of [3, Theorem 10] is wrong. On the other hand, we can apply a similar
method to that of this paper to [3, Theorem 10].

4. The condition (H)K

In this section, we study the condition (H)F . Let F be a formally real field
(see Definition 2.6). A matrix U ∈ Mn(F ) is called an orthogonal matrix if
its transpose U∗ is equal to the inverse U−1. In addition to the condition
(H)F , we consider the condition (H ′)F :
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(H ′)F For each n ∈ N and each symmetric matrix A ∈ Mn(F ), A can be
diagonalized by an orthogonal matrix over F .

Proposition 4.1. Let F be a formally real field. Then, F satisfies the
condition (H)F if and only if F satisfies the condition (H ′)F .

Proof. Suppose that F satisfies the condition (H)F . Then, for each a, b ∈
F , a symmetric matrix (

0 b
4

b
4 a

)
is diagonalizable over F . Hence, we have

√
a2 + b2 ∈ F , and by induction,

for any finite subset {a1, . . . , an} ⊆ F , we have
√
a21 + · · ·+ a2n ∈ F . Let

A ∈ Mn(F ) be a symmetric matrix. Then by the hypothesis, there exists
a subset {x1, . . . , xn} ⊆ Fn whose linear span is equal to Fn such that each
xi is an eigenvector of A. Since A is symmetric, using the Gram-Schmidt
procedure, we can choose x1, . . . , xn satisfying that a matrix U := (x1, . . . , xn)
is an orthogonal matrix.

Let F be a formally real field, and let (Γ,≤) be a totally ordered abelian
group. A subset {cα.β}(α,β)∈Γ×Γ ⊆ F ∗ indexed by Γ× Γ is called a factor set
if it satisfies

• c0,0 = c0,γ = cγ,0 = 1,

• cα,β = cβ,α,

• cα,βcα+β,γ = cα,β+γcβ,γ

for each α, β, γ ∈ Γ. We denote by F ((Γ, cα,β)) the Hahn-field defined by a
factor set {cα,β}:

F ((Γ, cα,β)) :=
{
f : Γ → F : supp f is a well-ordered set

}
,

f · g(γ) :=
∑

α+β=γ

f(α)g(β)cα,β
(
f, g ∈ F ((Γ, cα,β))

)
,

where supp f := {γ ∈ Γ : f(γ) ̸= 0}.
The Hahn-field F ((Γ, cα,β)) is maximally complete with respect to a gen-

eral valuation V (f) := min supp f , f ∈ F ((Γ, cα,β)) (c.f. [11]). The next
theorem is an extension of [6, Theorem 1].

Theorem 4.2. Put L := F ((Γ, cα,β)), and suppose that F satisfies the
condition (H ′)F . Then, L satisfies the condition (H ′)L.
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Proof. We write f =
∑

γ f(γ)t
γ for an element f ∈ L. Let n ≥ 2, and let

A ∈ Mn(L) be a symmetric matrix. Then, A can be represented by

A =
∑

γ∈S
Aγ t

γ

where S ⊆ Γ is a well-ordered set, and Aγ ∈ Mn(F ) is a symmetric matrix
for each γ ∈ S. To prove the theorem, we may assume that the expansion of
A is started from 0,

A = A0 + · · · , S ⊆ {γ ∈ Γ : γ ≥ 0},

and A0 is diagonal matrix, but not a multiple of the unit matrix I. Moreover,
after conjugating by some permutation matrix, we may assume that there
exists an r, 1 ≤ r < n, such that A0 is of the forma11 · · · 0

...
. . .

...
0 · · · ann


where

aii = a11 for 1 ≤ i ≤ r and aii ̸= a11 for r + 1 ≤ i ≤ n.

We shall prove that there exists an orthogonal matrix U ∈ Mn(L) such that
U∗AU is of the form (

A1 0

0 A2

)
where A1 ∈ Mr(L), A2 ∈ Mn−r(L), then by an induction on size n, we com-
plete the proof. In general, we call an n-square matrix (r, n−r)-blockdiagonal
if it has the shape (

B 0

0 C

)
where B is an r-square matrix and C is an (n− r)-square matrix.

Let T := {γ1+ · · ·+γn : n ∈ N, γ1, . . . γn ∈ S} be the semigroup generated
by S. Then by [8, Theorem 3.4], T is a well-ordered set. By the transfinite
construction, we will construct a sequence U0, . . . , Uγ , . . . ∈ Mn indexed by
γ ∈ T such that

(1) U∗
0 U0 = I,



246 k. ishizuka

(2)
∑

α+β=γ
α,β∈T

U∗
α Uβcα,β = 0 for each γ ∈ T , γ > 0,

(3) Vγ :=
∑

α+β+η=γ
α,β,η∈T

U∗
αAβUηcα,β,η is (r, n − r)-blockdiagonal for each

γ ∈ T ,

where cα,β,η := cα,βcα+β,η = cα,β+ηcβ,η, hence cα,β,η = cη,β,α. Then, U :=∑
γ Uγt

γ is the desired orthogonal matrix.
For γ = 0, we put U0 = I. Let δ ∈ T , and suppose we have determined

U0, . . . , Uγ , . . ., γ < δ, satisfying (1) − (3). Consider the condition (2) with
γ = δ. Since U0 = I, we can rewrite this condition as

U∗
δ + Uδ +

∑
α+β=δ
α,β ̸=δ

U∗
α Uβcα,β = 0.

Put
Sδ :=

∑
α+β=δ
α,β ̸=δ

U∗
α Uβcα,β,

then it follows from cα,β = cβ,α that Sδ is a symmetric matrix. Hence (2)
holds if and only if Uδ is of the form

Uδ = −1

2
Sδ +Qδ

where Qδ is any antisymmetric matrix. Therefore, the task is to choose an
antisymmetric matrix Qδ such that Uδ = −(1/2)Sδ + Qδ satisfies (3) with
γ = δ.

Now, we can rewrite Vδ as

Vδ = U∗
δ A0 +A0Uδ +

∑
α+β+η=γ

α,η ̸=0

U∗
αAβUηcα,β,η

= −QδA0 +A0Qδ + Tδ

where

Tδ := −1

2
(SδA0 +A0Sδ) +

∑
α+β+η=γ

α,η ̸=0

U∗
αAβUηcα,β,η.

Since Sδ and all the Aγ ’s are symmetric, combining cα,β,η = cη,β,α, it follows
that Tδ is symmetric. Notice that Tδ is expressed in terms of matrices already
determined.
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Write

Vδ =

v11 · · · 0
...

. . .
...

0 · · · vnn

 , Qδ =

q11 · · · 0
...

. . .
...

0 · · · qnn

 , Tδ =

t11 · · · 0
...

. . .
...

0 · · · tnn

 .

Then, we have

vij = −qijajj + aiiqij + tij = −qij(ajj − aii) + tij

for all 1 ≤ i, j ≤ n. If either 1 ≤ i ≤ r < j ≤ n or 1 ≤ j ≤ r < i ≤ n, then by
choosing aii, we have aii ̸= ajj . Finally, we put

qij :=

{ tij
ajj−aii

(1 ≤ i ≤ r < j ≤ n or 1 ≤ j ≤ r < i ≤ n),

0 otherwise.

Then, we can check that Qδ is antisymmetric and Vδ is (r, n−r)-blockdiagonal.
This completes the proof.

By using the above theorem, we can characterize the condition for which
K satisfies the condition (H)K .

Theorem 4.3. Suppose that the residue class field k of K is formally real.
Then, K satisfies the condition (H ′)K if and only if k satisfies the condition
(H ′)k.

Proof. The sufficiency is easy to prove by the reduction to the residue
class field. Conversely, suppose that k satisfies the condition (H ′)k. Let L be
an immediate extension of K which is maximally complete (c.f. [12, Theorem
4.49]). Then by the well-known result (c.f. [4, Chapter 3, Corollary to Theorem
10]), K is algebraically closed in L. Therefore, if L satisfies the condition
(H)L, then K satisfies the condition (H)K , hence the condition (H ′)K by
Proposition 4.1. On the other hand, by [5, Theorem 6], L is analytically
isomorphic to the Hahn-field k((G, cα,β)) where G is the valuation group of
K and {cα,β} ⊆ k∗ is a factor set. Hence, by Theorem 4.2, L satisfies the
condition (H ′)L, which completes the proof.

By Proposition 4.1, we have the next corollary. Surprisingly, the condition
(H)K is independent of the valuation group of K.



248 k. ishizuka

Corollary 4.4. Suppose that the residue class field k of K is formally
real. Then, K satisfies the condition (H)K if and only if k satisfies the condi-
tion (H)k.

Combining Theorem 3.6 with Corollary 4.4, we can say that the spectral
theorem of self-adjoint compactoid operators holds if the residue class field k
satisfies the condition (H)k. The condition is independent of the valuation
group of K.

Theorem 4.5. Suppose that the residue class field k of K is formally real,
and satisfies the condition (H)k. Let T ∈ L(c0) be a self-adjoint compactoid
operator. Then, there exist an orthonormal sequence x1, x2, . . . ∈ c0 and
(λn) ∈ c0 such that ⟨xn, xn⟩ = 1 for each n ∈ N, and

T (x) =

∞∑
n=1

λn⟨x, xn⟩xn.

Proof. From Theorem 3.6 and Corollary 4.4, it suffices to prove that for
each x ∈ c0, x ̸= 0, we have

√
⟨x, x⟩ ∈ K. By the proof of Proposition 4.1,

we have
√
a21 + . . . a2n ∈ k for each finite subset {a1, . . . , an} ⊆ k. Therefore,

applying Hensel’s lemma, we have the claim.

5. Appendix

In this appendix, we summarize the results of [10, Section 6]. In [10,
Section 6], the coefficient field K is assumed to be algebraically closed. On
the other hand, in this appendix, we give no condition on K. Hence, it can
be perhaps discretely valued.

Proposition 5.1. ([10, Proposition 6.2]) Suppose K is densely val-
ued or the residue class field k of K is an infinite field. Let r ∈ |K|, r ̸= 0,
and f : BK(0, r) → E, f(λ) =

∑∞
n=0 anλ

n be an analytic function. Then we
have

sup
λ∈BK(0,r)

∥f(λ)∥ = max
n

∥an∥rn.

Proof. In the case E = K, the conclusion of Proposition 5.1 is well-known.
Hence, the same proof as that of [10, Proposition 6.2] works.
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Corollary 5.2. ([10, Corollary 6.3]) With the same assumptions as
those of Proposition 5.1, the set of analytic functions BK(0, r) → E is uni-
formly closed.

Theorem 5.3. ([10, Lemma 6.9]) Let T1, T2, . . . ∈ L(E), and let T =
limn→∞ Tn in the sense of the operator norm. Suppose that

(1) for each n ∈ N and each r ∈ DTn , (I − λTn)
−1 is analytic in BK(0, r),

(2) for each r ∈ DT , Mr := sup|λ|≤r ∥(I − λT )−1∥ < ∞, and

(3) K is densely valued or the residue class field k of K is an infinite field.

Then, (I − λT )−1 is analytic in BK(0, r) for each r ∈ DT .

Proof. We can apply the same proof as that of [10, Lemma 6.9].

Corollary 5.4. With the same assumptions as those of Theorem 5.3,
we have the following:

(1) If K is densely valued, then we have

lim
n→∞

∥Tn∥1/n = sup{ |λ| : λ ∈ σ(T )}.

(2) If K is discretely valued and the residue class field k of K is an infinite
field, then we have

lim
n→∞

∥Tn∥1/n ≤ |π|−1 sup{ |λ| : λ ∈ σ(T )}

where π ∈ BK is a generating element of a maximal ideal of BK .

Proof. For a sufficiently small r > 0, (I − λT )−1 is of the form
∑

n(λT )
n

in BK(0, r). Therefore, by Proposition 5.1 and Theorem 5.3, we have (I −
λT )−1 =

∑
n(λT )

n in BK(0, r) for each r ∈ DT . Hence, we derive (1), (2).

For x1, . . . , xn ∈ E, we define the volume function of x1, . . . , xn ∈ E by

Vol(x1, . . . , xn) :=

n∏
i=i

dist
(
xi, [xj : j < i]

)
.

These properties can be found in [13, Chapter 1].
From now on, when K is discretely valued, we assume that a Banach space

(E, ∥ · ∥) satisfies ∥E∥ ⊆ |K|.
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Definition 5.5. ([10, Definition 6.10]) Let E be infinite-dimensional,
let T ∈ L(E). For n ∈ N, we set

∆n(T ) := sup

{
Vol(T (x1), . . . , T (xn))

Vol(x1, . . . , xn)
: x1, . . . , xn linearly independent

}
,

∆−(T ) := lim inf
n→∞

(∆n(T ))
1/n,

∆+(T ) := lim sup
n→∞

(∆n(T ))
1/n.

By [13, Corollary 1.5], if [x1, . . . , xn] = [y1, . . . , yn], then we have

Vol(x1, . . . , xn) = Vol(y1, . . . , yn).

Thus, we obtain

∆n(T ) = sup
{
Vol(T (x1), . . . , T (xn)) : ∥xi∥ ≤ 1 for each i

}
.

Proposition 5.6. ([10, Proposition 6.11]) Let T ∈ L(E) be a com-
pactoid operator. Then, we have ∆+(T ) = 0.

Proof. See the proof of [10, Proposition 6.11].

Lemma 5.7. ([10, Lemma 6.13]) Let x1, . . . , xn ∈ E, ∥xi∥ ≤ 1 for each i
and 0 < ε < Vol(x1, . . . , xn). If y1, . . . , yn ∈ E, ∥yi − xi∥ < ε for each i, then
we have Vol(x1, . . . , xn) = Vol(y1, . . . , yn).

Proof. See the proof of [10, Lemma 6.13].

The next proposition is proved in [10], but the proof makes a little mistake.
We shall give a modified proof.

Proposition 5.8. ([10, Proposition 6.12]) Let T ∈ L(E) be such that

Ms = sup|λ|≤s ∥(I − λT )−1∥ = ∞

for some s ∈ DT , then we have ∆−(T ) > 0.

Proof. By assumption, there exists a sequence λ1, λ2, . . . ∈ BK(0, s) satis-
fying that ∥(I−λnT )

−1∥ tends to∞. Thus, there exists a sequence y1, y2, . . . ∈
E tending to 0 such that for

xn := (I − λnT )
−1yn,
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we have infn ∥xn∥ > 0 and supn ∥xn∥ < ∞. It follows from the same reason
of part I of the proof of [10, Proposition 6.12] that λ1, λ2, . . . does not have
a convergent subsequence (part I of the proof of [10, Proposition 6.12,] is
correct). Thus, by taking a suitable subsequence, we may assume inf n̸=m |λn−
λm| ̸= 0 and infn |λn| > 0. By replacing a norm ∥ · ∥ with a suitable norm
equivalent to ∥ · ∥, we may assume that ∥xn∥ = 1 for each n ∈ N. Also, it is
easy to see that we may assume ∥T∥ < 1.

Put µn := λ−1
n for each n, then we have

• ∥T∥ < 1,

• |λn| ≤ s, |µn| ≤ C for each n,

• 0 < ρ < infn ̸=m |µn − µm|,
• ∥xn∥ = 1 for each n,

• limn→∞(xn − λnT (xn)) = 0, limn→∞(µnxn − T (xn)) = 0,

where ρ < 1 and C > 1 are suitable constants. We claim that for each n ∈ N,
there exists a positive number r(n) ≤ 1 such that

r(n) ≤ Vol(xk+1, xk+2, . . . , xk+n)

for all but finitely many k ∈ N. We prove the claim by the induction on n.
For n = 1, we can take r(1) = 1. Suppose that r(1), r(2), . . . , r(n − 1) have
been determined. Then, there exists a natural number k0 ∈ N such that for
each k ≥ k0, we have

r(l) ≤ Vol(xk+1, xk+2, . . . , xk+l) (1 ≤ l ≤ n− 1),

and

∥µkxk − T (xk)∥ < ε

where 0 < ε < ρ · t2, t :=
∏n−1

i=1 r(i). In particular, for each k ≥ k0,
xk+1, . . . , xk+n−1 is t-orthogonal. Put r(n) := C−1ρ · r(n − 1) · t ≤ 1, and
we shall prove that r(n) is the desired constant. In fact, by the induction
hypothesis, we have

Vol(xm+1, xm+2, . . . , xm+n)

= dist
(
xm+n, [xm+1, . . . , xm+n−1]

)
·Vol(xm+1, xm+2, . . . , xm+n−1)

≥ r(n− 1) · dist
(
xm+n, [xm+1, . . . , xm+n−1]

)
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for each m ≥ k0. Thus, we have to show that for each choice of ξ1, . . . ,
ξn−1 ∈ K,

y := xm+n − (ξ1xm+1 + · · ·+ ξn−1xm+n−1)

has norm ≥ C−1ρt. Since C−1ρt ≤ 1, we may assume 1 = ∥xm+n∥ =
∥ξ1xm+1 + · · ·+ ξn−1xm+n−1∥. Then, we have∥∥∥∑n−1

i=1
ξi(µm+n − µm+i)xm+i

∥∥∥
=
∥∥∥µm+n ·

(∑n−1

i=1
ξixm+i − xm+n

)
+
(
µm+nxm+n − T (xm+n)

)
+ T

(
xm+n −

∑n−1

i=1
ξixm+i

)
+
∑n−1

i=1
ξi ·
(
T (xm+i)− µm+ixm+i

)∥∥∥
≤ C∥y∥ ∨ ε ∨ ∥y∥ ∨

(
ε · max

1≤i≤n−1
|ξi|
)

= C∥y∥ ∨ ε ∨
(
ε · max

1≤i≤n−1
|ξi|
)
.

On the other hand, by t-orthogonality of xm+1, . . . , xm+n−1, we obtain

1 = ∥ξ1xm+1 + · · ·+ ξn−1xm+n−1∥ ≥ t · max
1≤i≤n−1

|ξi|

and∥∥∥∑n−1

i=1
ξi(µm+n − µm+i)xm+i

∥∥∥ ≥ t · max
1≤i≤n−1

|ξi| · |µm+n − µm+i|

≥ tρ · max
1≤i≤n−1

|ξi|

≥ tρ · ∥ξ1xm+1 + · · ·+ ξn−1xm+n−1∥ = tρ.

Consequently, we have

tρ ≤ C∥y∥ ∨ εt−1.

By our choice ε < ρt2, we must have

C−1ρt ≤ ∥y∥,

which proves the claim.

Finally, we prove ∆−(T ) > 0. Let n ∈ N. Choose a positive number
ε′ with 0 < ε′ < r(n), and choose a natural number k0 ∈ N such that
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Vol(xk+1, . . . , xk+n) ≥ r(n) and ∥xk − λkT (xk)∥ < ε′ for all k ≥ k0. By
Lemma 5.7, we have

Vol(xk0+1, . . . , xk0+n) = Vol
(
λk0+1T (xk0+1), . . . , λk0+nT (xk0+n)

)
= |λk0+1 . . . λk0+n| Vol

(
T (xk0+1), . . . , T (xk0+n)

)
≤ |λk0+1 . . . λk0+n|∆n(T ) Vol(xk0+1, . . . , xk0+n).

Therefore, we obtain

∆n(T ) ≥ |λk0+1 . . . λk0+n|−1 ≥ s−n.

As a consequence, we have the desired inequality ∆−(T ) ≥ s−1 > 0.

Combining Proposition 5.6 and Proposition 5.8, we obtain the following
theorem.

Theorem 5.9. Let T ∈ L(E) be a compactoid operator. Then for each
r ∈ DT , we have Mr = sup|λ|≤r ∥(I − λT )−1∥ < ∞.
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