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Abstract : In this article we study the n-homogeneous polynomials P that are c-continuous on

bounded subsets of ℓ1. We show that P can be decomposed in the form R + Q, where Q and R

are n-homogeneous polynomials, with R weakly star continuous and Q (x) = 0 for all x ∈ keru for
u = (1, 1, . . . , 1, . . . ).We conclude that P =

∑n
j=0 u

n−j ⊗Rj , where Rj is a weakly star continuous

j-homogeneous polynomial for j = 0, 1, . . . , n.
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1. Introduction

Let E and F be Banach spaces and Φ be an arbitrary subset of E′. A
function f : E → F is said to be Φ-continuous on bounded subsets of E,
if for each bounded set Ω ⊂ E, a ∈ Ω and ε > 0, there are ϕ1, . . . , ϕp in
Φ and δ > 0, such that if x ∈ Ω, |ϕj (x− a)| < δ, for j = 1, 2, . . . , p,
then ∥f (x)− f (a)∥ < ε. In a similar way we define uniform Φ-continuity on
bounded subsets of E.

In [1] is showed that in every Banach space E, every m-homogeneus poly-
nomial P : E → F which is weakly continuous on bounded sets of E is weakly
uniformly continuous on bounded sets. The corresponding problem for holo-
morphic functions is still open.

Problem 1. If f : E → C is a holomorphic function which is weakly
continuous on bounded sets, is f weakly uniformly continuous?

This problem was raised in 1982 by Aron et al. in [1] and cited in many
works, such as [1, 2, 3, 5, 8]. It is obvious that the problem has an affirmative
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answer if E is reflexive. However, Dineen in [6] showed that this problem has
an affirmative answer if E = c0 and more generally in [4], it is shown that
this problem also has an affirmative answer in every Banach space space with
the U property and without a copy of ℓ1. In particular, this is true for every
Banach space that is an M -ideal in its bidual, such as Banach spaces with a
shrinking and unconditional Schauder basis.

The Problem 1 is also so-called “the ℓ1-problem”, since Aron et al., showed
in [1, Example 3.5], that if Problem 1 has an affirmative answer for the space
ℓ1, then it has an affirmative answer for all Banach spaces E.

Every entire function f : ℓ1 → C, which is c0-continuous on bounded sets
of ℓ1, is c0-uniformly continuous on bounded sets, since every bounded set is
relatively σ (ℓ1, c0)-compact. However, it changes if we consider the space c of
the convergent sequences and the topology σ (ℓ1, c) in ℓ1, since the bounded
subsets of ℓ1 are not relatively σ (ℓ1, c)-compact. In fact, the sequence of
vectors (en) of the canonical basis of ℓ1 does not converge in this topology.
Thus we raise the next problem apparently weaker than ℓ1-problem.

Problem 2. Is every c-continuous holomorphic function on bounded sub-
sets of ℓ1, c-uniformly continuous?

This paper is motivated by the question mentioned above. We focus our
attention on polynomials and entire functions on ℓ1 that are c-continuous on
bounded sets.

2. Notations

If E is a complex Banach space, B (E) and E′ will denote the closed unit
ball and the topological dual of E, respectively. For each positive integer m,
L (mE) is the space of continuous m-linear mappings from E × · · · × E to
C and P (mE) is the space of continuous m-homogeneous polynomials from
E to C. For each polynomial P ∈ P (mE), there exists a unique symmetric

mapping
∨
P ∈ L (mE) such that P (x) =

∨
P (x, . . . , x) =

∨
P (xm). When m = 1,

we have that L
(
1E
)
= P

(
1E
)
= E′ and for m = 0, P

(
0E
)
and L

(
0E
)
are

associated to C.
The space L (mE) is a Banach space, under the norm

A ∈ L (mE) 7−→ ∥A∥ = sup {|A (x1, x2, . . . , xm)| : xj ∈ E, ∥xj∥ ≤ 1} ,

and therefore for every x, y ∈ E and every integer positive j, with 0 ≤ j ≤ m,
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we have that ∣∣A (xm−j , yj
)∣∣ ≤ ∥A∥

∥∥xm−j
∥∥∥∥yj∥∥ .

Also, P (mE) is a Banach space with respect to the norm

∥P∥ = supx∈B(E) |P (x)|

and we have that

∥P∥ ≤
∥∥∥∨
P
∥∥∥ ≤ mm

m!
∥P∥ .

We refer to [9] or [5] for the general theory of polynomials and holomorphic
mappings on Banach spaces.

Let Φ ⊂ E′ be an arbitrary family. We say that a bounded sequence
(xn) ⊂ E , is Φ-Cauchy if for all ϕ ∈ Φ, the numerical sequence ϕ (xn)
converges. We say that (xn) ⊂ E , is Φ-convergent if there exists x ∈ E such
that limn ϕ (xn) = ϕ (x), for every ϕ ∈ Φ. In this case we write Φ−limn xn = x.
For example, in the space ℓ1 space, the sequence of canonical basis vectors (en)
is c-Cauchy, but (en) is not c-convergent. We denote by PΦ (mE) the space of
all Φ-sequentially continuous polynomials on bounded subsets of E. PΦ (mE)
is a norm-closed subspace of P (mE).

The following result is an immediate consequence of [1, Lemma 2.4,
Lemma 2.6, Proposition 2.8].

Theorem 1. Let E be a complex Banach space and Φ be any separable
subspace of E′.

(i) If P ∈ PΦ(
mE), then for every bounded Φ-Cauchy sequence (xn), the

sequence of (m− 1)-homogeneous polynomials Tn (x) =
∨
P
(
xn, x

m−1
)

converges in norm. In particular, if (xn) is Φ-convergent to 0 then (Tn)
converges in norm to the null polynomial.

(ii) If P ∈ PΦ (mE) then the m-linear mapping
∨
P : E × · · · × E → C

is Φ-continuous. Besides, for each a ∈ E and every integer j with

0 ≤ j ≤ m, the mapping Tj (x) =
∨
P
(
aj , xm−j

)
is Φ-continuous on

bounded subsets of E.

3. c-Continuous polynomials

The canonical basis (ej) of ℓ1 is c-Cauchy and therefore by Theorem 1,
given a polynomial P ∈ Pc (

mℓ1) the sequence of polynomials Tk (x) =
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∨
P
(
ek, x

m−1
)
converges in the norm. If P ∈ Pc0 (

mℓ1), then Tk converges
to 0 in norm, since c0 − limk ek = 0.

If ϕ ∈ P
(
1ℓ1
)
= ℓ∞ is c-continuous on bounded subsets of ℓ1 then ϕ ∈ c.

In fact, suppose that ϕ = (ϕ1, ϕ2, . . . ). Since the sequence (ek) is c-Cauchy,
then by Theorem 1, the sequence (ϕk) = (ϕ (ek)) converges, that is (ϕk) ∈ c.
In the same way, we show that if ϕ ∈ P

(
1ℓ1
)
is c0-continuous on bounded

subsets of ℓ1, then ϕ ∈ c0. However, this last result is a particular case of
[7, Theorem V.5.6].

We denote by (e∗n) the associated sequence of coefficient functionals for the
basis (en) of ℓ1.

Proposition 1. Let (fn) be a sequence of complex-valued functions de-
fined on ℓ1. If (fn) is pointwise bounded, then for all x, y ∈ ℓ1 the series∑∞

j=1 e
∗
j (x) fj (y) converges. Moreover, we have that:

(i) If (Rn) ⊂ P (mℓ1) converges to 0 pointwise and

P (x) =
∞∑
j=1

e∗j (x)Rj (x) ,

then P ∈ P
(
m+1ℓ1

)
.

(ii) If Φ = c or Φ = c0 and (Rn) ⊂ PΦ (mℓ1) converges to 0 in norm and

P (x) =

∞∑
j=1

e∗j (x)Rj (x) ,

then P ∈ PΦ (mℓ1) .

Proof. Let
(
e∗j

)
be the coordinate functionals associated with the canon-

ical basis (ej) of ℓ1. For each y ∈ ℓ1 we have (fi (y)) ∈ ℓ∞ and therefore∑∞
j=1 e

∗
j (x) fj (y) converges.

(i) Since (Rn) converges to 0 pointwise, then (Rn) is uniformly bounded
on B(ℓ1) by [9, Theorem 2.6], that is, supj≥1 ∥Rj∥ < ∞. Thus |Rj (x)| ≤
∥Rj∥ ∥x∥m, for all x ∈ B (ℓ1) and j ≥ 1. Obviously R (x) =

∑∞
j=1 e

∗
j (x)Rj (x)

is an (m+ 1)-homogeneous polynomial and

|P (x)| =

∣∣∣∣∣∣
∞∑
j=1

e∗j (x)Rj (x)

∣∣∣∣∣∣ ≤ sup
j≥1

|Rj (x)|
∞∑
j=1

∣∣e∗j (x)∣∣ ≤ sup
j≥1

∥Rj∥ ∥x∥m+1 ,
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hence
∥P∥ = sup

x∈B(ℓ1)
|P (x)| ≤ sup

j≥1
∥Rj∥ ,

and therefore it is continuous.
(ii) For each k ∈ N define Tk (x) :=

∑k
j=1 e

∗
j (x)Rj (x). Since

(
e∗j

)
⊂ Φ

and (Rj) ⊂ PΦ (mℓ1), then (Tk) ⊂ PΦ

(
m+1ℓ1

)
. Now, for all x ∈ B (ℓ1) and

m,n ∈ N with n > m, we have

|Tm (x)− Tn (x)| ≤

∣∣∣∣∣∣
n∑

j=m+1

e∗j (x)Rj (x)

∣∣∣∣∣∣
≤ sup

j=m+1,...,n
|Rj (x)|

n∑
j=m+1

∣∣e∗j (x)∣∣
≤ sup

j=m+1,...,n
∥Rj∥ ∥x∥m+1 ≤ sup

j≥m+1
∥Rj∥ ∥x∥m+1 ,

and therefore ∥Tm − Tn∥ ≤ supj≥m+1 ∥Rj∥. Since lim ∥Rj∥ = 0, it follows
that (Tm) is a Cauchy sequence in the space PΦ (mℓ1) and therefore con-
vergent in norm. Since P (x) = limk Tk (x) for all x ∈ ℓ1, it follows that
P ∈ PΦ (mℓ1).

Our interest in the ℓ1 space is due to the following result.

Proposition 2. Let E be a Banach space with a bounded unconditional
Schauder basis (bn), m ∈ N and let (Pj) ⊂ P (mE) be a sequence such that
for all x ̸= 0 we have limj Pj (x) ̸= 0. If for all x =

∑∞
j=1 xjbj ∈ E the

function Q (x) :=
∑∞

j=1 xjPj (x) is defined and continuous on E, then E is
isomorphic to ℓ1.

Proof. In fact, let be x =
∑∞

j=1 xjbj ̸= 0 and (θj) ⊂ C with |θj | = 1 for all
j = 1, 2, . . . such that θjxjPj (x) = |xjPj (x)|, then x̄ =

∑∞
j=1 xjθjbj ∈ E and

therefore

Q (x̄) =
∞∑
j=1

xjθjPj (x) =
∞∑
j=1

|xj | |Pj (x)| .

Since limj Pj (x) ̸= 0, then there exists an positive integer j0 and δ > 0 such
that |Pj (x)| > δ, for j ≥ j0. Hence we have that

Q (x̄) ≥
j0∑
j=1

|xj | |Pj (x)|+ δ

∞∑
j=j0+1

|xj | .
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Thus (xj) ∈ ℓ1. This proves that (bj) ≻ (ej). Since (bj) is bounded then∑∞
j=1 |xj | < ∞ implies that

∑∞
j=1 xjbj ∈ E. Thus, (ej) ≻ (bj) and therefore

E is isomorphic to ℓ1.

The conclusion of Proposition 1 (ii) is not true if the sequence (Pj) con-
verges to 0. In fact, if E = ℓ2 and Pj (x1, x2, . . . ) = 1/j, then Q (x1, x2, . . . ) =∑∞

j=1 xjPj (x) ∈ P
(
2ℓ2
)
.

Corollary 1. Let (Rj) ⊂ Pc (
mℓ1) be a sequence of polynomials conver-

gent in norm. If P (x) =
∑∞

j=1 xjRj (x) then P ∈ Pc (ℓ1).

Proof. Since Pc (
mℓ1) is a closed subspace of P (mℓ1), then R = limRj ∈

Pc (
mℓ1). Now, if u = (1, 1, . . . ) ∈ c then

P (x) =
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) +

∞∑
j=1

e∗j (x)R (x)

=
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) + u (x)R (x) .

Since limj ∥Rj −R∥ = 0, then by Proposition 1(2) the polynomial

Q (x) =
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) ,

is c-continuous on bounded sets. Obviously S (x) := u (x)R (x) is also c-
continuous on bounded subsets of ℓ1.

Lemma 1. Let E be a Banach space. If ϕ ∈ E′, R ∈ P
(
m−1E

)
and

Q (x) := ϕ (x)R (x), then for all x, y ∈ E we have

∨
Q
(
x, ym−1

)
=

1

m
ϕ (x)R (y) +

(
1− 1

m

)
ϕ (y)

∨
R
(
x, ym−2

)
.

Proof. Let T : E × · · · × E → C be the m-linear map defined by

T (z1, z2, . . . , zm) = ϕ (z1)
∨
R (z2, z3, . . . , zm) .
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Then Q (x) = T (x, x, . . . , x), and by [9, Proposition 1.6] we have

∨
Q (z1, z2, . . . , zn) =

1

m!

∑
σ∈Sm

T
(
zσ(1), zσ(2), . . . , zσ(m)

)
=

1

m!

∑
σ∈Sm

ϕ
(
zσ(1)

) ∨
R
(
zσ(2), zσ(3), . . . , zσ(m)

)
.

If z2 = z3 = · · · = zm = z, then we obtain

ϕ
(
zσ(1)

) ∨
R
(
zσ(2), zσ(3), . . . , zσ(n)

)
=

ϕ (z1)
∨
R (z, z . . . , z) if σ(1) = 1,

ϕ (z)
∨
R (z1, z, . . . , z) if σ(1) ̸= 1.

Therefore, if K = {σ ∈ Sm : σ (1) = 1}, then #K = (m− 1)! and

∨
Q
(
z1, z

m−1
)
=

1

m!

(∑
σ∈K

ϕ (z1)
∨
R (z, z . . . , z) +

∑
σ∈Sm−K

ϕ (z)
∨
R (z1, z, . . . , z)

)
=

1

m!

(
(m− 1)!ϕ (z1)R (z) + (m!− (m− 1)!)ϕ (z)

∨
R
(
z1, z

m−2
))

=
1

m
ϕ (z1)R (z) +

(
1− 1

m

)
ϕ (z)

∨
R
(
z1, z

m−2
)
.

Lemma 2. For m ≥ 1, let (Rj) ⊂ P
(
m−1ℓ1

)
be a pointwise convergent

sequence to zero and P (x) =
∑∞

j=1 e
∗
j (x)Rj (x). Then for all x, y ∈ ℓ1 we

have

∨
P
(
x, ym−1

)
=

1

m

∞∑
j=1

e∗j (x)Rj (y) +

(
1− 1

m

) ∞∑
j=1

e∗j (y)
∨
Rj

(
x, ym−2

)
.

Proof. Let Qj (x) = e∗j (x)Rj (x). Lemma 1 implies that for all x, y ∈ ℓ1
we have

∨
Qj

(
x, ym−1

)
=

1

m
e∗j (x)Rj (y) +

(
1− 1

m

)
e∗j (y)

∨
Rj

(
x, ym−2

)
.

Since (Rj) converges pointwise to zero, then by [9, Theorem 2.6], (Rj) is
bounded in norm. Hence, by Proposition 1, the series

∑∞
j=1 e

∗
j (x)Rj (y) con-

verges. Let (Sj) be a sequence of (m− 1)-homogeneous polynomials defined

by Sj (y) =
∨
Rj

(
x, ym−2

)
. Then the sequence (Sj) converges pointwise to zero
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by the polarization formula [9, Theorem 1.10]. Therefore, by Proposition 1

the series
∑∞

j=1 e
∗
j (y)

∨
Rj

(
x, ym−2

)
converges and since

P (x) =

∞∑
j=1

e∗j (x)Rj (x) =

∞∑
j=1

Qj (x) ,

it follows by linearity that
∨
P
(
x, ym−1

)
=
∑∞

j=1

∨
Qj

(
x, ym−1

)
. So

∨
P
(
x, ym−1

)
=

∞∑
j=1

1

m
e∗j (x)Rj (y) +

∞∑
j=1

(
1− 1

m

)
e∗j (y)

∨
Rj

(
x, ym−2

)
.

It follows from Lemma 2 that if P (x) =
∑∞

j=1 e
∗
j (x)Rj (x) and y =

(y1, y2, . . . ) ∈ ℓ1, then

∨
P
(
ek, y

m−1
)
=

1

m
Rk (y) +

(
1− 1

m

) ∞∑
j=1

e∗j (y)
∨
Rj

(
ek, y

m−2
)
.

We do not know if the converse of Proposition 1(2) is true for all m ∈
N. However, the following proposition shows that if Φ = c0, the pointwise
convergence of (Rn) is necessary.

Proposition 3. Let (Rn) ⊂ P (mℓ1), be a sequence of c0-continuous poly-
nomials and for each x ∈ ℓ1 define

P (x) =

∞∑
n=1

e∗n (x)Rn (x) .

If P is c0-continuous in the bounded subsets of ℓ1, then (Rn) converges
pointwise to zero.

Proof. We prove the assertion by induction on m. Recall that if (ek) is
the canonical basis of ℓ1 and (ϕj) ⊂ c0 is a bounded sequence such that
limn→∞ ϕn (ek) = 0 for every k, then limj ϕj (a) = 0 for all a ∈ ℓ1.

Consider the bounded sequence (ϕn) ⊂ c0 = Pc0

(
1ℓ1
)
, and the polynomial

P (x) =
∑∞

n=1 e
∗
n (x)ϕn (x). Assume that the polynomial P is c0-continuous

on bounded subsets of ℓ1. Then, by Lemma 2, we have

∨
P (ek, y) =

1

2
ϕk (y) +

1

2

∞∑
j=1

e∗j (y)ϕj (ek) ,
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thus

(3.1)
∨
P (ek, el) =

1

2
(ϕk (el) + ϕl (ek)) .

As P ∈ Pc0 (ℓ1), then for each l we have limk

∨
P (ek, el) = 0, also for each l we

have limk ϕl (ek) = 0 because ϕl ∈ c0. Thus, Equation 3.1 implies that for each
l we have limk ϕk (el) = 0 and therefore for all a ∈ ℓ1, we have limϕn (a) = 0.
This shows the assertion for m = 1.

We assume the assertion true for m. Let (Rn) ∈ Pc0

(
m+1ℓ1

)
be a bounded

sequence and P (x) =
∑∞

n=1 e
∗
n (x)Rn (x). Assume that P ∈ Pc0

(
m+2ℓ1

)
. By

Lemma 2, we have

(3.2)
∨
P
(
ek, y

m+1
)
=

1

m+ 2
Rk (y) +

(
1− 1

m+ 2

) ∞∑
j=1

e∗j (y)
∨
Rj (ek, y

m) .

As P ∈ Pc0

(
m+2ℓ1

)
, then by Theorem 1, the polynomial Tk (y) =

∨
P (ek, y

m)
is c0-continuous on bounded subsets of ℓ1. Also by hypothesis Rk ∈ Pc0 (

mℓ1),
thus the identity 3.2 implies that for each k, the polynomial

Sk (y) :=

∞∑
j=1

yj
∨
Rj

(
ek, y

m−1
)
,

is c0-continuous on bounded subsets of ℓ1. By Theorem 1, for each k, j, the

polynomial Uj (y) =
∨
Rj

(
ek, y

m−1
)
is c0- continuous on bounded subsets of ℓ1.

Also, by [9, Theorem 2.2] we have

sup
j

∥Uj∥ ≤ sup
j

∥∥∥ ∨
Rj

∥∥∥ < mm

m!
sup
j

∥Rj∥ <∞.

Thus, (Uj) ⊂ Pc0

(
m−1ℓ1

)
is a bounded sequence and by induction hypothesis,

given k and y ∈ ℓ1, we have

(3.3) lim
j

∨
Rj

(
ek, y

m−1
)
= 0.

For each j and x ∈ ℓ1 define ψj (x) =
∨
Rj

(
x, ym−1

)
. Since Rj ∈ Pc0

(
m+1ℓ1

)
then we have that (ψj) ⊂ c0 by Theorem 1, and

∥ψj∥ ≤ mm

m!
sup
j

∥Rj∥ ∥y∥m−1 <∞ for all j ≥ 1.
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Equation 3.3 implies that for each k we have that limj ψj (ek) = 0 and therefore
for all x ∈ ℓ1 we have limj ψj (x) = 0. In particular limj ψj (y) = 0, that
is limRj (y) = 0. This proves our assertion for m + 1, and the proof is
complete.

We recall that if ψ ∈ c ⊂ ℓ∞ then ψ = λu + ϕ, where ϕ ∈ c0, u =
(1, 1, . . . , 1, . . . ) ∈ c and λ ∈ C. Now, for each j we have ∥ψ∥ ≥ |ψ (ej)| =
|λu (ej) + ϕ (ej)| = |λj + ϕj (ek)| and letting j → ∞ we have ∥ψ∥ ≥ |λ|.
Therefore, if (λj) ⊂ C, (ϕj) ⊂ c0 and limj ∥λju+ ϕj∥ = 0 then limj λj = 0
and limj ∥ϕj∥ = 0. This result can be generalized to polynomials in the space
Pc (

mℓ1).

Theorem 2. Let (Qj) ⊂ Pc (
mℓ1) and (Rj) ⊂ Pc0 (

mℓ1) be sequences of
polynomials such that Qj (x) = 0 for all x ∈ keru. If limj ∥Qj +Rj∥ = 0,
then limj ∥Rj∥ = 0 and limj ∥Qj∥ = 0.

Proof. Let Pj = Qj +Rj then Pj ∈ Pc (
mℓ1) for every j. Now, if z ∈ keru

then
|Pj (z)| = |Rj (z)| .

Thus

sup
x∈B(ℓ1)∩keru

|Rj (x)| = sup
x∈B(ℓ1)∩keru

|Pj (x)| ≤ sup
x∈B(ℓ1)

∥Pj (x)∥ = ∥Pj∥ .

Therefore

(3.4) lim
j→∞

sup
x∈B(ℓ1)∩keru

|Rj (x)| = 0.

If x =
∑∞

j=1 αjej ∈ B (ℓ1), then for every n we have

x =

∞∑
j=1

αj (ej − ej+n) +
∞∑
j=1

αjej+n.

Note that

yn :=

∞∑
j=1

αj (ej − ej+n) ∈ 2B (ℓ1) ∩ keru, and zn :=

∞∑
j=1

αjen+j ∈ B (ℓ1) .

By Leibniz’s formula [9, Theorem 1.8], we have

Rj (x) = Rj (yn + zn) = Rj (yn) +

m−1∑
k=0

(
n
k

)
∨
Rj

(
ykn, z

m−k
n

)
.
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Since Rj ∈ Pc0 (ℓ1), ∥zn∥ ≤ 2 for every n, and c0 − limn zn = 0, then by
Theorem 1, for each k = 0, 1, . . . ,m− 1, we have

lim
n

(
sup

y∈B(ℓ1)

∣∣∣∣∨Rj

(
yk, zm−k

n

)∣∣∣∣
)

= 0.

Thus, for each k = 0, 1, . . . ,m − 1, and ε > 0, there exists n0, n1, . . . , nm−1

such that

sup
x∈B(ℓ1)

∣∣∣∣∨Rj

(
xk, zm−k

n

)∣∣∣∣ < ε

2m+1
, for all n ≥ nk, k = 0, 1, . . . ,m− 1,

and therefore

sup
x∈B(ℓ1)

∣∣∣∣∨Rj

(
xk, zm−k

n

)∣∣∣∣ < ε

2m+1
, for all n ≥ max {n0, n1, . . . , nm−1} .

Thus, for all n ≥ max {n0, n1, . . . , nm−1}, we obtain

|Rj (x)| =

∣∣∣∣∣Rj (yn) +
m−1∑
k=0

(
m
k

)
∨
Rj

(
ykn, z

m−k
n

)∣∣∣∣∣
= |Rj (yn)|+

m−1∑
k=0

(
m
k

) ∣∣∣∣∨Rj

(
ykn, z

m−k
n

)∣∣∣∣
≤ sup

y∈2B(ℓ1)∩keru
|Rj (y)|+

m−1∑
k=0

(
m
k

)
sup

x∈B(ℓ1)

∣∣∣∣∨Rj

(
xk, zm−k

n

)∣∣∣∣(3.5)

≤ sup
y∈2B(ℓ1)∩keru

|Rj (y)|+
m−1∑
k=0

(
m
k

)
ε

2m+1

= sup
y∈2B(ℓ1)∩keru

|Rj (y)|+
ε

2
.

By 3.4 we have limj supy∈B(ℓ1)∩keru |Rj (y)| = 0, hence there exists j0 such
that for j ≥ j0 we have

sup
y∈2B(ℓ1)∩keru

|Rj (y)| <
ε

2
,

By relation 3.5 we obtain

|Rj (x)| < ε, for all x ∈ B (ℓ1) and j ≥ j0.

Thus for all j ≥ j0, ∥Rj∥B(ℓ1)
< ε. This shows that limj ∥Rj∥ = 0. Now

Qj = Pj −Rj , implies that limj ∥Qj∥ ≤ limj ∥Pj∥+ limj ∥Rj∥ = 0.
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Theorem 3. Every polynomial P ∈ Pc (
mℓ1) can be decomposed in the

form P = Q+ R, where Q ∈ Pc

(
m−1ℓ1

)
with Q (x) = 0 for all x ∈ keru and

R ∈ Pc0

(
m−1ℓ1

)
.

Proof. Form = 1 the statement is obvious. Suppose it is true form−1. Let

P ∈ Pc (
mℓ1) and for each j consider the polynomials Tj (x) =

∨
P
(
ej , x

m−1
)
.

Then by Theorem 1 we have that Tj ∈ Pc

(
m−1ℓ1

)
and by induction hypothesis

we have
∨
P
(
ej , x

m−1
)
= Tj (x) = Qj (x) +Rj (x) ,

where Qj ∈ Pc

(
m−1ℓ1

)
, Rj ∈ Pc0

(
m−1ℓ1

)
and Qj (x) = 0 for all x ∈ keru

for all j. Since (ej) is c-Cauchy, then (Tj) converges in norm to a polynomial
P ∈ Pc

(
m−1ℓ1

)
and by induction hypothesis we have P = Q + R, with

Q ∈ Pc (ℓ1), R̄ ∈ Pc0 (ℓ1) and Q (x) = 0 for all x ∈ keru. By Lemma 2
limj Rj = R and limj Qj = Q in norm. So

P (x) =
∞∑
j=1

e∗j (x)
∨
P
(
ej , x

m−1
)
=

∞∑
j=1

e∗j (x) (Qj (x) +Rj (x))

And therefore

P (x) =
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+

∞∑
j=1

e∗j (x) Q̄ (x)

+
∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
+

∞∑
j=1

e∗j (x) R̄ (x)

=

∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+ Q̄ (x)u (x)

+

∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
+ R̄ (x)u (x)

=
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+
(
Q̄ (x) + R̄ (x)

)
u (x)

+
∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
.
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Since limj

∥∥Qj (x)− Q̄ (x)
∥∥ = 0, the polynomial

x 7−→
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
is c-continuous on bounded subsets of ℓ1 by Proposition 1 and vanishes on
keru. Also the polynomial x 7→

(
Q̄ (x) + R̄ (x)

)
u (x) vanishes on keru. Since

limj

∥∥Rj (x)− R̄ (x)
∥∥ = 0, and Rj , R̄ ∈ Pc0

(
m−1ℓ1

)
, Proposition 1 implies

that x 7→
∑∞

j=1 e
∗
j (x)

(
Rj (x)− R̄ (x)

)
is a c0-continuous polynomial on

bounded subsets of ℓ1.

We define

Q (x) =
(
Q̄ (x) + R̄ (x)

)
u (x) +

∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
,

R (x) =

∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
.

Lemma 3. Let E be a Banach space, ϕ ∈ E′ and Q ∈ P (mE) be a poly-
nomial such that Q (x) = 0 for all x ∈ kerϕ. Then there exists a polynomial
R ∈ P

(
m−1E

)
such that Q = ϕR.

Proof. Pick a ∈ E such that ϕ (a) = 1 and define the map T : E → E by
T (x) = ϕ (x) a− x. Then T is a continuous linear operator and T (x) ∈ kerϕ
for all x ∈ E. By Leibniz’s formula, we have

Q (x) = Q (ϕ (x) a− T (x))

=

m∑
j=0

(
m
j

)
(−1)m−j

∨
Q
(
(ϕ (x) a)j , (T (x))m−j

)
=

m∑
j=1

(
m
j

)
(−1)m−j

∨
Q
(
(ϕ (x) a)j , (T (x))m−j

)
+Q (T (x))

=
m∑
j=1

(
m
j

)
(−1)m−j ϕj (x)

∨
Q
(
aj , (T (x))m−j

)
= ϕ (x)

m∑
j=1

(
m
j

)
(−1)m−j ϕj−1 (x)

∨
Q
(
aj , (T (x))m−j

)
.
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Note that for each j the map x 7→ ϕj−1 (x)
∨
Q
(
aj , (T (x))m−j

)
is an (m− 1)-

homogeneous polynomial. So

R (x) :=
m−1∑
j=0

(
m
j

)
(−1)m−j ϕj−1 (x)

∨
Q
(
aj , (T (x))m−j

)
,

is a continuous (m− 1)-homogeneous polynomial and

Q (x) = ϕ (x)R (x) .

Corollary 2. Let Q ∈ Pc (
mℓ1) such that Q (x) = 0 for all x ∈ keru,

then there exists R ∈ Pc

(
m−1ℓ1

)
such that Q (x) = u (x)R (x) for all x ∈ ℓ1.

Proof. We define the map T : ℓ1 → ℓ1 by T (x) = u (x) e1 − x, then T is
obviously a c-continuous linear operator and T (x) ∈ keru for all x ∈ ℓ1. By
Lemma 3 we have

Q (x) = Q (u (x) e1 − T (x)) = u (x)
m∑
j=1

(
m
j

)
uj−1 (x)

∨
Q
(
ej1, (T (x))m−j

)
.

Since Q ∈ Pc (
mℓ1) then for each j = 1, 2, . . . ,m, the polynomial Sj : ℓ1 → C

given by Sj (z) =
∨
Q
(
ej1, z

m−j
)
, is c-continuous on bounded subsets of ℓ1.

Therefore Sj ◦ T ∈ Pc (ℓ1) for j = 1, 2, . . . ,m and we have that

R (x) =
m−1∑
j=1

(
m
j

)
uj−1 (x) (Sj ◦ T ) (x)

=

m−1∑
j=1

(
m
j

)
uj−1 (x)

∨
Q
(
ej1, (T (x))m−j

)
,

is a c-continuous polynomial on bounded sets, and Q = uR.

Theorem 4. If P ∈ Pc (
mℓ1), then for j = 0, 1, 2, . . . ,m there are polyno-

mials Rj ∈ Pc0

(
jℓ1
)
, such that

P (x) = R0 (x)u
m (x) + um−1 (x)R1 (x) + · · ·+ u (x)Rm−1 (x) +Rm (x) .
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Proof. By Theorem 3 we have P = Qm + Rm, where Qm ∈ Pc (
mℓ1),

Rm ∈ Pc0 (
mℓ1) and Q (x) = 0 for all x ∈ keru. By Lemma 3, Qm = uSm−1

with Sm−1 ∈ Pc (
mℓ1). Thus, we have

P = uSm−1 +Rm.

Since Sm−1 ∈ Pc

(
m−1ℓ1

)
, then by Theorem 3 we have Sm−1 = Qm−1 +

Rm−1, where Qm−1 ∈ Pc

(
m−1ℓ1

)
, Qm−1 (x) = 0 for all x ∈ keru and Rm−1 ∈

Pc0

(
m−1ℓ1

)
and therefore

P = u (Qm−1 +Rm−1) +Rm (x)

= uQm−1 +Rm−1u+Rm (x) .

By Lemma 3 we have that Qm−1 = uSm−2, with Sm−2 ∈ Pc (
mℓ1). Therefore

we have

P (x) = u (x)2 Sm−2 +Rm−1u+Rm (x) .

Proceeding in this way we find for each j = 0, 1, 2, . . . ,m, the polynomials
Rj ∈ Pc0

(
jℓ1
)
, and Sj ∈ Pc

(
jℓ1
)
, such that

P (x) = umR0 +R1u
m−1 + · · ·+Rm−1u+Rm (x) ,

where R0 := S0.

4. c-Continuous entire functions

Let Ω be an open subset of complex Banach space E. A mapping
f : Ω ⊂ E → C is said to be holomorphic, if for each a ∈ Ω there exists
a ball B (a, r) ⊂ Ω and a sequence of polynomials (Pm) with Pm ∈ P (mℓ1),
m = 0, 1, 2 . . . , such that f (x) =

∑∞
m=0 Pm (x) uniformly for x ∈ B (a, r).

We denote by H(Ω) the vector space of all holomorphic mappings from Ω into
C. A holomorphic function f ∈ H (E) is said to be of bounded type if it
maps bounded sets into bounded sets. We denote by Hb(E) the space of the
holomorphic functions on E of bounded type.

Let Φ ⊂ E′, we denote by HΦ(E) the space of all functions f ∈ H(E)
that are Φ-continuous on bounded subsets of E, and by HΦu (E) the space
of all functions f ∈ H(E) that are uniformly Φ-continuous on bounded
subsets of E.

In 1982 Aron et al. in [1] have shown that the ℓ1 problem has a posi-
tive answer if Hℓ∞ (ℓ1) ⊂ Hb (ℓ1). On the other hand, it is obviously that
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Hc0 (ℓ1) ⊂ Hb (ℓ1) because every bounded set of ℓ1 is relatively σ (ℓ1, c0)-
compact, but bounded subsets of ℓ1 are not necessarily relatively σ (ℓ1, c)-
compact. These considerations have motivated us to raise the following
question.

Problem 3. If f : ℓ1 → C is a holomorphic function which is c-continuous
on bounded sets, is f of bounded type?

An affirmative answer to this problem would answer affirmatively
Problem 2.

We denote by P(m)
c0 (ℓ1) the space of all polynomials of the form

Q =
∑m

j=0Qj , with Qj ∈ Pc0

(
jℓ1
)
for all j = 0, 1, 2, . . . ,m. If Um (x) :=∑m

j=0 u
m−j (x), for all x ∈ ℓ1, we define the m-homogeneous polynomial

U ⊗Q ∈ Pc (
mℓ1) by

(U ⊗Q) (x) =

m∑
j=0

um−j(x)Qj(x).

We denote by Pf∗ (mℓ1) the space of continuous polynomials of finite type
that are c0-continuous on bounded subsets of ℓ1.

Lemma 4. If R (x) ∈ P(m)
c0 (ℓ1), then given ε > 0 there exists a polynomial

Q =
∑m

j=0Qj with Qj ∈ Pf∗
(
jℓ1
)
such that ∥Um ⊗ (R−Q)∥ < ε.

Proof. If x ∈ ℓ1, we denote by

qn (x) =

n∑
j=1

e∗j (x) ej and qn (x) =

∞∑
j=n+1

e∗j (x) ej .

Then x = qn (x)+ qn+1 (x). Now, if ϕ = (ϕj)j∈N ∈ c0, then limnmaxi≥n |ϕi| =
0. As maxi≥n |ϕi| = supx∈B(ℓ1) ϕ (qn (x)) we have limn supx∈B(ℓ1) ϕ (qn (x)) =
0. That is

(4.1) lim
n

sup
x∈B(ℓ1)

ϕ (x− qn (x)) = 0.

Let R =
∑m

j=0Rj , with Rj ∈ Pc0

(
jℓ1
)
. Then by [1], for each j = 0, 1, 2, . . . ,m,

the polynomial Rj is c0-uniformly continuous on bounded sets. By 4.1, this
implies that given ε > 0, there exists an n0 such that |Rj (x)−Rj (q

n (x))| <



c-continuous polynomials on ℓ1 205

ε/ (m+ 2), for all n ≥ n0, x ∈ B (ℓ1) and j = 0, 1, 2 . . . ,m. Thus ∥Rj −Rjq
n∥

≤ ε/ (m+ 2) for n ≥ n0 and j = 0, 1, . . . ,m. Therefore we have∥∥um−j ⊗ (Rj −Rjq
n)
∥∥ = sup

x∈B(ℓ1)

∣∣um−j (x) (Rj (x)−Rjq
n (x))

∣∣
≤ sup

x∈B(ℓ1)
|Rj (x)−Rjq

n (x)|

= ∥Rj −Rjq
n∥ ≤ ε

m+ 2
.

Thus, for n ≥ n0 we have

∥R−Rqn∥ =

∥∥∥∥∥∥
m∑
j=0

Um ⊗ (R−Rqn)

∥∥∥∥∥∥ ≤
m∑
j=0

∥R−Rqn∥ < ε.

Since R ∈ Pc0 (
m) (ℓ1) and qn : ℓ1 → ℓ1 is a finite range operator, we have

that Rqn ∈ Pf∗ (mℓ1).

If f =
∑∞

n=0 Pn ⊂ Hb (ℓ1) is a holomorphic function of bounded type with
Pn ∈ Pc (

nℓ1) for all n ∈ N, then using the same arguments as in [1], it is not
difficult to show that f ∈ Hc (ℓ1).

Proposition 4. The following statements are equivalent.

(i) Every holomorphic function f ∈ Hc (ℓ1) of the form f =
∑∞

m=0 Um⊗Qm

with Qm ∈ P(m)
c0 (ℓ1) is of bounded type.

(ii) Every holomorphic function f ∈ Hc (ℓ1) of the form f =
∑∞

m=0 Um ⊗
Qm ∈ Hc (ℓ1) with Qm ∈ P(m)

f∗ (ℓ1), is of bounded type.

Proof. The implication (i) ⇒ (ii) is obvious since Pf∗ (mℓ1) ⊂ Pc0 (
mℓ1).

Let us prove (ii)⇒ (i). Let f =
∑∞

m=0 Um⊗Qm ∈ Hb (ℓ1) withQm ∈ P(m)
c0 (ℓ1)

for everym. Since Qm ∈ Pc0 (
mℓ1), by Lemma 4 there exists a Rm ∈ P(m)

f∗ (ℓ1),

such that ∥Um ⊗ (Qm −Rm)∥1/m < 1
mm . Thus lim ∥Um ⊗ (Qm −Rm)∥1/m =

0 and by [6, p. 206], the holomorphic function g =
∑
Um ⊗ (Qm −Rm) is of

bounded type and therefore g ∈ Hc (ℓ1). Then f − g =
∑
Um⊗Rm ∈ Hc (ℓ1).

By hypothesis h = f − g ∈ Hb (ℓ1) and therefore f = g + h ∈ Hb (ℓ1).
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