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Abstract: In this article we study the n-homogeneous polynomials P that are c-continuous on
bounded subsets of ¢1. We show that P can be decomposed in the form R + @, where @ and R
are n-homogeneous polynomials, with R weakly star continuous and @ (z) = 0 for all z € keru for
u=(1,1,...,1,...).We conclude that P = Z?:o u I ® R;, where R; is a weakly star continuous
j-homogeneous polynomial for j =0,1,...,n.
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1. INTRODUCTION

Let E and F be Banach spaces and ® be an arbitrary subset of E'. A
function f : F — F is said to be ®-continuous on bounded subsets of E,
if for each bounded set Q@ C E, a € 2 and ¢ > 0, there are ¢1,...,¢, in
® and 0 > 0, such that if z € Q, |¢;(x —a)] < 6, for j = 1,2,...,p,
then || f () — f (a)]] < e. In a similar way we define uniform ®-continuity on
bounded subsets of F.

In [I] is showed that in every Banach space E, every m-homogeneus poly-
nomial P : ' — F which is weakly continuous on bounded sets of F is weakly
uniformly continuous on bounded sets. The corresponding problem for holo-
morphic functions is still open.

ProBLEM 1. If f : E — C is a holomorphic function which is weakly
continuous on bounded sets, is f weakly uniformly continuous?

This problem was raised in 1982 by Aron et al. in [I] and cited in many
works, such as [T}, 2 Bl 5, 8]. It is obvious that the problem has an affirmative
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answer if E is reflexive. However, Dineen in [6] showed that this problem has
an affirmative answer if £ = ¢y and more generally in [4], it is shown that
this problem also has an affirmative answer in every Banach space space with
the U property and without a copy of ¢1. In particular, this is true for every
Banach space that is an M-ideal in its bidual, such as Banach spaces with a
shrinking and unconditional Schauder basis.

The Problem [I]is also so-called “the £1-problem”, since Aron et al., showed
in [I, Example 3.5], that if Problem [I| has an affirmative answer for the space
f1, then it has an affirmative answer for all Banach spaces E.

Every entire function f : 1 — C, which is ¢p-continuous on bounded sets
of /1, is cg-uniformly continuous on bounded sets, since every bounded set is
relatively o ({1, ¢p)-compact. However, it changes if we consider the space ¢ of
the convergent sequences and the topology o (¢1,¢) in ¢, since the bounded
subsets of ¢; are not relatively o (¢1,c)-compact. In fact, the sequence of
vectors (ey) of the canonical basis of ¢; does not converge in this topology.
Thus we raise the next problem apparently weaker than ¢;-problem.

PROBLEM 2. Is every c-continuous holomorphic function on bounded sub-
sets of ¢1, c-uniformly continuous?

This paper is motivated by the question mentioned above. We focus our
attention on polynomials and entire functions on ¢; that are c-continuous on
bounded sets.

2. NOTATIONS

If £ is a complex Banach space, B (E) and E’ will denote the closed unit
ball and the topological dual of E, respectively. For each positive integer m,
L (™FE) is the space of continuous m-linear mappings from F X --- X E to
C and P ("™FE) is the space of continuous m-homogeneous polynomials from
E to C. For each polynomial P € P (mE) there exists a unique symmetric

mapping P € L(™E) such that P (z) = P(a:, Ce,T) = ]vD(a:m) When m =1,
we have that £ (1E) = 73( E) = E' and for m =0, P (OE) and £ (OE) are
associated to C.

The space £ ("™FE) is a Banach space, under the norm

Aec L(ME)v— ||A|| =sup{|A(x1,22,...,2n)| 1 z; € E, || <1},

and therefore for every x,y € E and every integer positive j, with 0 < j < m,
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we have that o } A
A (2™, y7)| < Al ||| |17

Also, P ("™FE) is a Banach space with respect to the norm

1Pl = supzepe) [P ()]

and we have that
v mm
1P <||P|| < =5 1P
m!

We refer to [9] or [5] for the general theory of polynomials and holomorphic
mappings on Banach spaces.

Let ® C FE’' be an arbitrary family. We say that a bounded sequence
(xn) C E , is ®-Cauchy if for all ¢ € @, the numerical sequence ¢ (x,,)
converges. We say that (z,,) C E , is ®-convergent if there exists z € E such
that lim, ¢ (z,,) = ¢ (x), for every ¢ € ®. In this case we write ®—lim,, z,, = x.
For example, in the space ¢; space, the sequence of canonical basis vectors (e;,)
is c-Cauchy, but (e,) is not c-convergent. We denote by Pg (™ E) the space of
all ®-sequentially continuous polynomials on bounded subsets of E. Pg (™E)
is a norm-closed subspace of P ("FE).

The following result is an immediate consequence of [I, Lemma 2.4,
Lemma 2.6, Proposition 2.8].

THEOREM 1. Let E be a complex Banach space and ® be any separable
subspace of E'.

(i) If P € Ps(™E), then for every bounded ®-Cauchy sequence (x,), the
v
sequence of (m — 1)-homogeneous polynomials Ty, (z) = P (x,,2™ ")
converges in norm. In particular, if (x,) is ®-convergent to 0 then (T},)
converges in norm to the null polynomial.

v
(ii) If P € Py (ME) then the m-linear mapping P : E x --- x E — C
is ®-continuous. Besides, for each a € E and every integer j with

\ . .
0 < j < m, the mapping T; (z) = P(aj,:z:m_J) is ®-continuous on
bounded subsets of E.

3. ¢-CONTINUOUS POLYNOMIALS

The canonical basis (e;) of ¢ is c-Cauchy and therefore by Theorem
given a polynomial P € P.("™{¢;) the sequence of polynomials T} (z) =
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v
P (ek,xmfl) converges in the norm. If P € P, ("¢1), then T} converges

to 0 in norm, since cg — limg e = 0.

IfopeP (161) = f, is c-continuous on bounded subsets of ¢; then ¢ € c.
In fact, suppose that ¢ = (¢1,¢2,...). Since the sequence (ey) is c-Cauchy,
then by Theorem (1} the sequence (¢x) = (¢ (ex)) converges, that is (¢) € c.
In the same way, we show that if ¢ € P (161) is cp-continuous on bounded
subsets of £1, then ¢ € cy. However, this last result is a particular case of
[7, Theorem V.5.6].

We denote by (e}) the associated sequence of coefficient functionals for the
basis (e;,) of ¢;.

PROPOSITION 1. Let (f,) be a sequence of complex-valued functions de-
fined on ¢y. If (f,) is pointwise bounded, then for all z,y € ¢ the series
>_i21€; (%) fj (y) converges. Moreover, we have that:

(i) If (Ry) C P (™) converges to 0 pointwise and

P(x)=) ¢ ()R (x),
j=1
then P € P (m+1€1)_
(ii) If ® =c or ® = ¢y and (Ry,) C Py ("™¢1) converges to 0 in norm and

o
=> ei(@)R
j=1
then P € Py ("41).

Proof. Let (e ) be the coordinate functionals associated with the canon-

ical basis (e;) of ¢1. For each y € ¢1 we have (f; (y)) € ¢x and therefore
>_51€j (%) fj (y) converges.

(i) Since (R,) converges to 0 pointwise, then (R,) is uniformly bounded
on B(f1) by [9, Theorem 2.6], that is, sup,>; [[R;[| < oco. Thus |R; (z)| <
IR [|z]|™, for all z € B (¢1) and j > 1. Obviously R (z) = 3772, €] (v) R; (2)
is an (m + 1)-homogeneous polynomial and

=1 ¢ (@) R; (x) < sup R, (z IZI6 <supHR ™
= iz
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hence
|P[| = sup [P (z)| <supl|Rl,
z€B(41) j=1
and therefore it is continuous.
(ii) For each k € N define T, (z) := Z§:1 e; (z) Rj (x). Since (ej) ce
and (R;) C Pg (™f1), then (Ty) C Pg (™). Now, for all z € B (/1) and
m,n € N with n > m, we have

T (z) — Ty (2)]

IN
®
L ¥
&
&
—~
8
~—

Jj=m+1
n
< sup [Rj(@)| D € (o)
j=m+1,...n pR—
< sup Ryl < sup || [
]:m—‘rl,..‘, ]>m
and therefore ||, — T,,|| < supjs,,+q [|R;l|. Since lim ||R;|| = 0, it follows

that (7},) is a Cauchy sequence in the space Py (™¢1) and therefore con-
vergent in norm. Since P (z) = limy T) (x) for all = € ¢, it follows that
Pe Py (™). 1

Our interest in the ¢; space is due to the following result.

PROPOSITION 2. Let E be a Banach space with a bounded unconditional
Schauder basis (by), m € N and let (P;) C P (™E) be a sequence such that
for all x # 0 we have lim; P; (z) # 0. If for all z = 3772 x;b; € E the
function Q () == 3772, z; P (a;) is defined and continuous on E, then E is
isomorphic to £1.

Proof. In fact, let be » = 3772, z;b; # 0 and (¢;) C C with |0;] = 1 for all
j=1,2,... such that 0;x;P; (z) = |z;P; (z)|, then & = > 2, ;0;b; € E and

therefore
Z 0, P; ( Z ;] |Pj (x

Since lim; Pj (x) # 0, then there exists an p031t1ve integer jo and § > 0 such
that |P; (x )] > ¢, for j > jo. Hence we have that

Q@) = |al [P ()| +6 Y ayl.
j=1

Jj=jo+1
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Thus (x;) € ¢;. This proves that (b;) > (ej). Since (b;) is bounded then
> iy |zj| < oo implies that 372, x;b; € E. Thus, (e;) = (bj) and therefore
FE is isomorphic to /1. |1

The conclusion of Proposition [1|(ii) is not true if the sequence (P;) con-
verges to 0. In fact, if £ = {9 and P; (z1,x2,...) = 1/j, then Q (z1,22,...) =
Z;il l‘ij (l‘) ep (gfg).

COROLLARY 1. Let (R;) C P.("™¢1) be a sequence of polynomials conver-

gent in norm. If P (z) = 372, x;R; (v) then P € P, ({1).

Proof. Since P, (") is a closed subspace of P (™/1), then R =lim R; €
P. (™). Now, if u=(1,1,...) € ¢ then
P(x) =) ¢ (@) (R () = R(2)) + ) ¢} (z) R()
j=1
=3¢ (@) (R; () = R (@) +u(2) R(z).

Since lim; | R; — R|| = 0, then by Proposition [1{2) the polynomial

Q) =) ¢ (@) (R (x) — R()),
j=1
is c-continuous on bounded sets. Obviously S (z) := u(x) R(z) is also ¢

continuous on bounded subsets of /1. |1

LEMMA 1. Let E be a Banach space. If $ € E', R € P(m_lE) and
Q (z) := ¢ (x) R(x), then for all x,y € E we have

Q) = o @ R+ (1= 1) 0w R (@),

Proof. Let T : E x --- x E — C be the m-linear map defined by

v
T (21,22, y2m) = ¢ (21) R(22,23,...,2m) -
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Then Q (x) =T (x,,...,z), and by [9, Proposition 1.6] we have

v 1
Q(z17z2>"->zn) = % Z T(ZU(1)7ZU(2)7"'7’ZO'(M))

’ O'ESm

1 v
Tl Z ¢ (2(1)) B (20(2), Z0(3)> - -+ Zo(m)) -

" 0ESm
If 29 = 23 =+ = z,, = z, then we obtain
¢(21)]\%(z,z...,z) if o(1) =1,
qﬁ(z)]v%(zl,z,...,z) if o(1) # 1.

Therefore, if K = {0 € Sy, : 0 (1) =1}, then #K = (m — 1)! and

\Y
¢ (201)) R (Z0(2) 20(3)s - - -+ Z0(n)) =

g)(zl,zm_l) :;L!<Z¢(zl)1\{2(z,z...,z)+ Z (b(z)}%(zl,z,...,z))

LEMMA 2. For m > 1, let (R;) C P (™ ¢1) be a pointwise convergent
sequence to zero and P (z) = > .72, e} (z) R;j (x). Then for all x,y € {; we

j=1"]
have
%(ZU ym_l):lie’f(x)R-( <1—1>ie m_2)
) m 7 ] m ] :

J=1 Jj=1

Proof. Let Q; () = e} (x) Rj (x). Lemma [l implies that for all z,y € ¢,
we have

O ey ) = Lot (@) Ry (9) + (1 - 1) ¢t (4) By (a,5™2).

m m

Since (R;) converges pointwise to zero, then by [9, Theorem 2.6], (R;) is
bounded in norm. Hence, by Proposition [1} the series 3 72, e () R; (y) con-
verges. Let (S;) be a sequence of (m — 1)-homogeneous polynomials defined

v
by S; (y) = R; (x,y™ 2). Then the sequence (S;) converges pointwise to zero
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by the polarization formula [9, Theorem 1.10]. Therefore, by Proposition

v
the series 3 7% €7 (y) R; (z,y™?) converges and since

2) =) ¢ (@) R;j(2) =) Q).

J=1 J=1

v v
it follows by linearity that P (z,y™ ') = Zjoi1 Q; (z,y™1). So

v . =1, 1y ., .V m—
Pl =3 e @ B )+ 3 (1 ) 6 ) s (00
j=1 j=1
It follows from Lemma [2 that if P(x) = > 72 €5 (z)Rj(x) and y =
(y1,y2,...) € £1, then

v Vv

P (er,y™ 1) = —Rk( <1—>Ze ) R; (e, y™72).

We do not know if the converse of Proposition [I[2) is true for all m €
N. However, the following proposition shows that if ® = ¢y, the pointwise
convergence of (R;) is necessary.

PROPOSITION 3. Let (R,,) C P (™¢1), be a sequence of cy-continuous poly-
nomials and for each x € ¢ define

=Y en ()R
n=1

If P is cp-continuous in the bounded subsets of {1, then (R,) converges
pointwise to zero.

Proof. We prove the assertion by induction on m. Recall that if (ey) is
the canonical basis of ¢; and (¢;) C ¢ is a bounded sequence such that
limy, 00 ¢ () = 0 for every k, then lim; ¢; (a) = 0 for all a € ¢;.

Consider the bounded sequence (¢,,) C co = Pe, (161), and the polynomial
P(x)=> 7" € (x)¢n (x). Assume that the polynomial P is cy-continuous
on bounded subsets of ¢1. Then, by Lemma [2| we have

JVD(% y) = *Gbk )+ 5 Ze ) ¢ (ex)
j:l
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thus

(3.1) I\S(ek,ez) =5 (¢x (er) + d1 (ex)) -

N | =

As P € P, (£1), then for each [ we have limy 1\:/’ (er,er) = 0, also for each | we
have limy, ¢; (ex,) = 0 because ¢; € ¢y. Thus, Equation implies that for each
[ we have limy, ¢y, (e;) = 0 and therefore for all a € ¢1, we have lim ¢,, (a) = 0.
This shows the assertion for m = 1.

We assume the assertion true for m. Let (R,,) € P, (mHEl) be a bounded
sequence and P (z) = Y07, e () Ry (z). Assume that P € P, (™*2(;). By
Lemma 2 we have

(3.2) ]\-/j (ek,ym+1) m:—QRk (y) + (1 - m:—2> 26; (v) f\{/j (er,y™).
j=1

v
As P € P, (m+2€1), then by Theorem the polynomial Ty (y) = P (ex,y™)
is co-continuous on bounded subsets of /1. Also by hypothesis Ry € P, ("/1),
thus the identity implies that for each k, the polynomial

Zy] €k, 1) 5

is cp-continuous on bounded subsets of ¢1. By Theorem [I], for each k, j, the

Y
polynomial Uj (y) = R; (ek, ym_l) is cg- continuous on bounded subsets of ¢;.
Also, by [9, Theorem 2.2] we have

sup||U | < supHR H < — sup||R | < o0.

Thus, (Uj) C Pe, (m_lﬁl) is a bounded sequence and by induction hypothesis,
given k and y € {1, we have

(3.3) hmR (er,y™ ") = 0.

Y
For each j and z € ¢y define ¢ (z) = R; (z,y™'). Since R; € Pe, ("141)
then we have that (v;) C co by Theorem |l and

m

il < — SupHR Hyl™ ™" <oo  forallj>1.
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Equationimplies that for each k we have that lim; 1; (e) = 0 and therefore
for all € ¢; we have lim;v; (z) = 0. In particular lim;; (y) = 0, that
is lim R;j (y) = 0. This proves our assertion for m + 1, and the proof is
complete. [

We recall that if ¢ € ¢ C o then ¥ = Au + ¢, where ¢ € co, u =
(1,1,...,1,...) € cand A € C. Now, for each j we have ||| > |¢ (e;)] =
|IAu(ej) + ¢ (ej)| = |\j+ ¢ (er)| and letting j — oo we have ||| > |A].
Therefore, if (A;) C C, (¢;) C co and lim; [|A\ju+ ¢;]| = 0 then lim; A\; = 0
and lim; [|¢;|| = 0. This result can be generalized to polynomials in the space

Pe (™).

THEOREM 2. Let (Q;) C P.(™¢1) and (R;) C Pe, (M¢1) be sequences of
polynomials such that Q; (z) = 0 for all x € keru. If lim; ||Q; + R;|| = 0,
then hrn] ”R]H =0 and hm] ||QJ|| =0.

Proof. Let P; = Qj + R; then P; € P.("{;) for every j. Now, if z € keru
then

|1P; (2)] = [R; (2)] -

Thus
sup  [R;j(z)|= sup  [Pj(z)| < sup [|P;(2)]=|F;].
z€B(£1)Nker u z€B({1)Nker u z€B({1)
Therefore
(3.4) lim sup |R; (z)| = 0.

J=00 ze B(41)Nker u

If ¢ = E;‘il ajej € B (41), then for every n we have

o0 o0
z =) ajlej—¢jitn) + ) ajejin.
j=1

=1

Note that

o
Yn = Z aj(ej —ejyn) € 2B (41) Nkerw, and z,:= Zajen+j € B(t).
j=1

By Leibniz’s formula [9, Theorem 1.8], we have

m—1 V.
R;j (z) = Rj (Yn + 2n) = Rj (yn) + (Z)R] (yﬁ’ 0 k)'
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Since Rj € Py, (€1), ||zn]] < 2 for every n, and ¢y — lim, 2z, = 0, then by
Theorem [1] for each £ =0,1,...,m — 1, we have
) “o

v
lim | sup |R; (yk, z;”_k)
" \yeB(h)

Thus, for each k = 0,1,...,m — 1, and € > 0, there exists ng,n1,...,Nm_1
such that
R, (2%, 2t . forall k=0,1 1
sup ~<:C,Z_) < ——, foralln>ng, k=0,1,... ., m—1,
weB(t) | " 2mt1
and therefore
R, (a*, 2" ° _ for all { }
sup -(a:,z *) < ——, for all n > max {ng,n1,...,Nm_1}.
x€B(41) ’ " amH "
Thus, for all n > max {ng,n1,...,Nm—1}, we obtain
m—1 m v
7 @ = |5+ X () R (sho )
k=
m—1 m v
=18l + () | (ko)
k=0
m—1 m v
63 = sw  Imel+ X () sw [R ()
y€2B(¢1)Nker u k=0 k r€B(£1)
 m €
< s mel+ Y (7))
ye2B(y keru kZO k) 2mtl
€
= s RO+
y€2B(£1)Nker u

By we have lim; supyc g, )nkeru |13 (¥)| = 0, hence there exists jo such
that for j > jo we have

9
p Rl < o
y€2B(¢1)Nker u

By relation [3.5] we obtain
|R; (z)| < e, forall z € B(¢;) and j > jo.

Thus for all j > jo, HRj||B(£1) < e. This shows that lim; ||R;|| = 0. Now
Qj = P] - Rj, implies that limj HQ]H < limj HP]H + limj HR]H =0. 1
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THEOREM 3. Every polynomial P € P.(™{;) can be decomposed in the
form P = Q + R, where Q € P, (mflﬁl) with @ (x) = 0 for all x € keru and
Re P, ("),

Proof. For m = 1 the statement is obvious. Suppose it is true for m—1. Let

v
P € P, (™) and for each j consider the polynomials Tj (z) = P (ej,z™!).
Then by Theoremwe have that T; € P, (m_lﬁl) and by induction hypothesis

we have
v

P(ej,a™ ™) =Tj (x) = Qj () + R; (x),
where Q; € P, (m_lﬁl), R; € P, (m_lﬁl) and Qj (x) = 0 for all € keru
for all j. Since (e;) is c-Cauchy, then (Tj) converges in norm to a polynomial
P c P, (m_lﬁl) and by induction hypothesis we have P = Q + R, with
Q € P.({1), R € P,y (1) and Q(x) = 0 for all z € keru. By Lemma
lim; R; = R and lim; @; = @ in norm. So

ieﬁ 0P (e il 7) + By (2)
And therefore
P(z) = iei () (Qj (z) — Q (x)) + i e () Q ()
+ i ¢; () (Rj (z) = R(2)) + iej () R ()
= geé‘ () (Qj (x) — Q (2)) + Q () u (x)
+ f:le? (z) (Rj (x) = R(x)) + R (z) u (x)
p=
= i (2) (@5 (1) — @ () + (Q (2) + R (x)) u (x)
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Since lim; HQj (z) — Q (z)|| = 0, the polynomial

m>—>Ze Q())

is c-continuous on bounded subsets of ¢; by Proposition [I| and vanishes on
ker u. Also the polynomlal - (Q(z ) + R (x)) u(x) vanishes on ker u. Since
lim;; HR H = 0, and Rj, R € P, (m 151) Proposition I implies
that « — Zj 1€ (z) (Rj () — R(z)) is a co-continuous polynomial on
bounded subsets of #;.

We define

= "¢ (2) (Rj (x) — R(z)).

—
/ |

LEMMA 3. Let E be a Banach space, ¢ € E' and Q € P (™FE) be a poly-
nomial such that @ (x) = 0 for all x € ker ¢. Then there exists a polynomial
ReP (m_lE) such that Q = ¢R.

Proof. Pick a € E such that ¢ (a) = 1 and define the map T': E — E by
T(x) =¢(xr)a—x. Then T is a continuous linear operator and T (z) € ker ¢
for all x € E. By Leibniz’s formula, we have
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. Vo .
Note that for each j the map x — ¢/~ (z) Q (af, (T (l’))m_]> is an (m —1)-
homogeneous polynomial. So

m—1

R =Y (1) 0o @@ (T @) ).
§=0

is a continuous (m — 1)-homogeneous polynomial and

Q(z) = ¢ (x) R(x).

COROLLARY 2. Let Q € P. (™) such that Q(x) = 0 for all x € keru,
then there exists R € P, (™ 1) such that Q (z) = u(x) R (z) for all z € {;.

Proof. We define the map T : ¢1 — ¢1 by T (z) = u(x)e; — x, then T is
obviously a c-continuous linear operator and 7' (z) € keru for all z € ¢;. By
Lemma [3] we have

Q@) = Quie)er ~T (@) =u(@) (") e @@ (@),
j=1

Since Q € P, ("™¢1) then for each j = 1,2,...,m, the polynomial S; : {; — C

Vo A
given by S;(2) = Q (e{,zm_J), is c-continuous on bounded subsets of /1.
Therefore Sj o T € P, (¢1) for j =1,2,...,m and we have that

( ) @) (850 7) 0

( ) @Q (. (@)™,

is a c-continuous polynomial on bounded sets, and Q = uR. |

TMH HMS

THEOREM 4. If P € P. (™), then for j = 0,1,2,...,m there are polyno-
mials R; € P, (jﬁl), such that

P(z) = Ry (z)u™ (z) +u™ ' () Ry (z) 4+ - +u(z) Ry () + Ry, ().
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Proof. By Theorem [3| we have P = @, + Ry,, where Q,, € P.("¢1),
Ry, € Py (Ml1) and Q (z) = 0 for all © € keru. By Lemma 3, Q,, = uSm—1
with Sp,—1 € Pe ("™¢1). Thus, we have

P=uS,,—1+ R,,.

Since S;,—1 € P, (mflﬁl), then by Theorem (3| we have S;,—1 = Qm-1 +
R,,_1, where Qp,_1 € P, (m_lfl) , Qm—1 () =0for all z € keru and R,,,—1 €
P, (mflﬁl) and therefore

P=u (Qm—l + Rm—l) + R, ($)
=uQm-1+ Ryp—1u+ Ry, (!T) .

By Lemma we have that Q-1 = uSy,—2, with Sp,_o € P. (™¥¢1). Therefore
we have

P(z) = u(x)? Sm_2 4+ Rm_1u+ Ry, () .

Proceeding in this way we find for each j = 0,1,2,...,m, the polynomials
Rj € Pco (Jfl), and Sj e P, (ng)’ such that

P(z) =u"Ry+ Riu™ '+ -+ Ry 1u+ Ry, (),

where Ry := Sp. 1

4. c-CONTINUOUS ENTIRE FUNCTIONS

Let € be an open subset of complex Banach space E. A mapping
f:Q C E — C is said to be holomorphic, if for each a €  there exists
a ball B (a,r) C Q and a sequence of polynomials (P,,) with P, € P ("¢1),
m = 0,1,2..., such that f(z) = > °_ P (x) uniformly for x € B (a,r).
We denote by H(£2) the vector space of all holomorphic mappings from §2 into
C. A holomorphic function f € H (FE) is said to be of bounded type if it
maps bounded sets into bounded sets. We denote by H;(E) the space of the
holomorphic functions on E of bounded type.

Let ® C E’, we denote by He(FE) the space of all functions f € H(E)
that are ®-continuous on bounded subsets of E, and by Ha, (F) the space
of all functions f € H(F) that are uniformly ®-continuous on bounded
subsets of E.

In 1982 Aron et al. in [I] have shown that the ¢; problem has a posi-
tive answer if Hy__ (¢1) C Hp (¢1). On the other hand, it is obviously that
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Heo (01) C Hp (€1) because every bounded set of ¢; is relatively o (¢1,co)-
compact, but bounded subsets of ¢; are not necessarily relatively o ({1, ¢)-
compact. These considerations have motivated us to raise the following
question.

ProBLEM 3. If f : /1 — Cis a holomorphic function which is c-continuous
on bounded sets, is f of bounded type?

An affirmative answer to this problem would answer affirmatively
Problem [

We denote by 7?0(5” ) (¢1) the space of all polynomials of the form
Q = >, Qj, with Q; € P, (761) for all j = 0,1,2,...,m. If Uy, (z) :=
Z;”ZO u™ I (x), for all * € /1, we define the m-homogeneous polynomial
U®Q € P.(") by

(U@Q) (@)= u"(@)Q;).

Jj=0

We denote by P« ("¢1) the space of continuous polynomials of finite type
that are c¢g-continuous on bounded subsets of #;.

LEMMA 4. IfR(z) € Pc(gn) (€1), then given € > 0 there exists a polynomial
Q=1L Qj with Q; € Py- (741) such that ||Uy, ® (R— Q)| <e.

Proof. If x € £1, we denote by

q" (z) = Z e; (r)e; and gn () = Z e; () e;.
j=1 j=n+1

Then z = ¢" (2) +qn+1 (z). Now, if ¢ = (;) ey € co, then lim, max;>y |¢i| =

0. As max;>p |¢i| = SUPzeB(s,) @ (qn (x)) we have lim,, SUDgeB(e) P (qn (x)) =
0. That is

(4.1) lim sup ¢(x—q" (z))=0.
" x€B(f1)

Let R = Z}n:o R;, with R; € Pe, (741). Then by [I], for each j = 0,1,2,...,m,
the polynomial R; is co-uniformly continuous on bounded sets. By this
implies that given £ > 0, there exists an ng such that |R; (z) — R; (¢" (x))| <
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e/ (m+2), foralln >ng,z € B({;)and j =0,1,2...,m. Thus |R; — R;q"||
<e/(m+2)forn>ngand j =0,1,...,m. Therefore we have

[u" @ (Rj = Rig")|| = sup |u" (2) (R, (x) — Rjq" (x))|
zEB({1)

< sup [R;(z)— Riq" (z)|
:BGB(Zl)

= [[Rj — Rjq"| <

+2

Thus, for n > ng we have

IR—Rq"| = > Un®([R-Rq")| <Y |R-Re"| <e.
j=0 7=0

Since R € P, (™) (¢1) and ¢" : 1 — {1 is a finite range operator, we have
that Rqg" € Py« ("41). 1

If f=> "y P, C Hpy(f1) is a holomorphic function of bounded type with
P, € P.(";) for all n € N, then using the same arguments as in [I], it is not
difficult to show that f € H. (¢1).

PRrROPOSITION 4. The following statements are equivalent.

(i) Every holomorphic function f € H. (¢1) of the form f =" Uy, @Qp,
with Qm, € Pc(gn) (¢1) is of bounded type.

(ii) Every holomorphic function f € H. ({;) of the form f =3 ° Upy ®
Qm € H. (41) with Q,, € plm) (¢1), is of bounded type.

Proof. The implication (i) = (ii) is obvious since Pp« ("™f1) C Pe, ("41).
Let us prove (i) = (i). Let f = >~ Un®Qmn, € Hy (1) with Qy, € Pc(;n) (41)
for every m. Since Q, € P, (M¢1), by Lemmathere exists a R, € P}T) (41),
such that Uy © (Qm — Run)|[Y/™ < L. Thus lim Uy, © (Qm — Rn)||Y/™ =
0 and by [6, p. 206], the holomorphic function g = > Uy, ® (Qm, — Ry,) is of
bounded type and therefore g € H. (¢1). Then f—g=> U, ® Ry, € H. ({1).
By hypothesis h = f — g € Hy (¢1) and therefore f =g+ h € Hy (¢1). 1
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