

EXTRACTA MATHEMATICAE Vol. 39, Num. 2 (2024), 173 – 187

[doi:10.17398/2605-5686.39.2.173](https://doi.org/10.17398/2605-5686.39.2.173) Available online June 13, 2024

Some applications of Q-points and Lebesgue filters to Banach spaces

M. HRUŠÁK^{*}, L. SÁENZ

Centro de Ciencias Matemáticas, UNAM A.P. 61-3, Xangari, Morelia, Michoacán, 58089, México

michael@matmor.unam.mx , luisdavidr@ciencias.unam.mx

Received November 22, 2023 Presented by A. Avilés Accepted May 10, 2024

Abstract: We present a new characterization of Q-point ultrafilters and use it to optimize the result of Avilés, Martínez-Cervantes, and Rueda Zoca linking the existence of L-orthogonal sequences and L-orthogonal elements in Banach spaces via ultrafilter limits.

Key words: Q-point, Katětov order, L-sequence, L-element. MSC (2020): 46B25, 03E35.

1. INTRODUCTION

The presence of subspaces isomorphic to ℓ_1 has been a central topic of research in contemporary Banach space theory. The concepts of L-orthogonal sequences and L-orthogonal elements have become relevant, as the existence of a subspace isomorphic to ℓ_1 implies, under a renorming, their existence (see $[10, 4]$ $[10, 4]$). Avilés, Martínez-Cervantez, and Rueda Zoca $[2]$ inquired into the relation between these concepts. In one direction they present several examples of Banach spaces which have L-orthogonal elements but no L-orthogonal sequences, and in the other, they show that the existence of counter-examples is independent of the usual axioms of set theory. In particular, they show:

- (1) For any selective ultrafilter $\mathscr U$, and any L-orthogonal sequence $(x_n)_{n\in\mathbb N}$ the \mathscr{U} - $\lim x_n$ in the weak^{*} topology is an *L*-orthogonal element.
- (2) There exists a Banach space X, such that for any ultrafilter $\mathscr U$ not a Q-point, there is an L-orthogonal sequence $(x_n)_{n\in\mathbb{N}}$ such that \mathscr{U} -lim x_n in the weak[∗] topology is not an L-orthogonal element.

[∗] Research of the first author was partially supported by a PAPIIT grant IN101323 and CONACyT grant A1-S-16164.

This suggests the question whether the assumption can be optimized. Our main theorem answers this question in the positive:

THEOREM 1.1. (MAIN THEOREM) A free ultrafilter $\mathscr U$ on $\mathbb N$ is a Q-point if and only if for every Banach space X and every L -orthogonal sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ the \mathscr{U} - $\lim x_n\in X^{**}$ with respect to the weak^{*} topology is an L-orthogonal element.

The theorem will be a consequence of Corollary [4.2](#page-7-0) and Corollary [5.6,](#page-10-0) it also involves a new characterization of Q-points in the spirit of Mathias' characterization of selective ultrafilters (see [\[12,](#page-14-1) Theorem 2.12]).

The proof of the theorem requires also knowledge of measure-theoretic properties of filters, in particular, Lebesgue filters [\[9\]](#page-14-2). We include a short section (Section 3) summarizing known facts about these, in particular, to simplify the proof of the main theorem compared to the one presented in [\[2\]](#page-13-1).

Finally, we briefly consider a dual theory to the one that involves Lorthogonality, this time involving c_0 [\[1\]](#page-13-2). We offer another result involving Q-points that generalizes a result of the same authors.

We outline the contents of the paper. Section 2 presents the relevant definitions as well as basic results. Section 3 is devoted to measure theoretic ultrafilters, the main result being Theorem [3.1](#page-4-0) which establishes the equivalence between some of measure theoretic filters present in the literature and which allows, together with Theorem [2.2,](#page-3-0) to study Lebesgue filters using the Katětov order. Section 4 is devoted to the first half of our main theorem. In contrast with [\[2\]](#page-13-1), we find a single Banach space and a single L-orthogonal sequence that for any given non-Q ultrafilter $\mathscr U$ admits an L-orthogonal subsequence which serves as a counter-example. Section 5 presents the other half of the main theorem and an analogous result concerning c_0 .

2. Preliminaries

Let X be a Banach space. We denote by B_X the closed unit ball of X .

- (1) A sequence $(x_n)_{n\in\mathbb{N}}\subseteq B_X$ is called an *L*-orthogonal sequence provided that for any $x \in X$, $\lim_{n \to \infty} ||x_n + x|| = 1 + ||x||$.
- (2) A sequence $(x_n)_{n\in\mathbb{N}}\subseteq B_X$ is called an S-sequence if for any $x\in X$, $\lim_{n\to\infty} ||x_n + x|| = \max{||x||, 1}.$
- (3) An element $x^{**} \in S_X^{**}$ is called an L-orthogonal element if for any $x \in X$, $||x^{**} + x|| = 1 + ||x||.$

(4) An element $x^{**} \in S_X^{**}$ is called an S-element provided that for any $x \in X$, $||x^{**} + x|| = \max{||x||}, 1$.

The "S-" and "L-" notions are dual in that "L-notions" are related to embeddability of ℓ_1 while "S-notions" are related to the embeddability of c_0 . The latter notions also come with a different "convex" closure operation: Given a Banach space X, $A \subseteq X$ and $x \in X$ we say that x is a c₀-convex combination of elements of A if there are $t_0, \ldots, t_n \in \mathbb{R}$ and $x_0, \ldots, x_n \in A$ such that $\max\{|t_0|, \ldots, |t_n|\} = 1$ and $\sum_{i=0}^n t_i x_i = x$. We denote this fact by $x \in \text{conv}_{c_0}(A).$

Recall that $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ is a filter if it is closed under taking supersets and finite intersections, and contains all complements of finite sets, while not containing the empty set. Dually, $\mathcal I$ is an ideal if $\mathcal I^* = \{ \mathbb N \setminus I : I \in \mathcal I \}$ is a filter, i.e., I contains all finite subsets of N and is closed under finite unions and taking subsets, and does not contain N. We denote by $\mathcal{I}^+ = \{J : J \notin \mathcal{I}\}\$ the set of all \mathcal{I} -positive subsets of \mathbb{N} . Finally, the restriction of the ideal (filter) to a set X is $\mathcal{I}|_X=\{I \cap X : I \in \mathcal{I}\}.$

Given a and $(a_n)_{n\in\mathbb{N}}$ points in a topological space X and a filter $\mathscr{F}\subseteq\mathcal{P}(\mathbb{N})$ we write $\mathscr{F}\text{-}\lim a_n = a$ if for any U neighborhood of $a \{n \in \mathbb{N} : a_n \in U\} \in \mathscr{F}$. If the sequence $(a_n)_{n\in\mathbb{N}}$ is a sequence of real numbers we write

- (1) $\mathscr{F}\text{-}\limsup a_n = \inf \{r : \{n \in \mathbb{N} : a_n \leq r\} \in \mathscr{F}\}\,$, and
- (2) $\mathscr{F}\text{-}\liminf a_n = \sup \{r : \{n \in \mathbb{N} : a_n \geq r\} \in \mathscr{F}\}.$

Similarly, we can also define limit notions with respect to sequences $(A_n)_{n\in\mathbb{N}}$ of sets w.r.t. $\mathscr F$ as follows

- (3) $\mathscr{F}\text{-}\lim^+ A_n = \{x : \{n \in \mathbb{N} : x \in A_n\} \in \mathscr{F}^+\}$, and
- (4) $\mathscr{F}\text{-}\lim A_n = \{x : \{n \in \mathbb{N} : x \in A_n\} \in \mathscr{F}\}.$

The following is an easy observation:

PROPOSITION 2.1. Let $(a_n)_{n\in\mathbb{N}}$ a sequence of reals, $(A_n)_{n\in\mathbb{N}}$ a sequence of sets, and $\mathscr{F} \subseteq \mathcal{P}(\mathbb{N})$ a free filter,

- (1) $\liminf a_n \leq \mathscr{F}\text{-}\liminf a_n \leq \mathscr{F}\text{-}\limsup a_n \leq \limsup a_n$.
- (2) $\mathscr{F}\text{-}\lim a_n = a$ exists if, and only if, $\mathscr{F}\text{-}\liminf a_n = \mathscr{F}\text{-}\limsup a_n$, and in this case it is equal to both.
- (3) For each $x, x \in \mathscr{F}\text{-}\lim^+ A_n$ if, and only if, $\mathscr{F}\text{-}\limsup \chi_{A_n}(x) = 1$; $x \in \mathscr{F}\text{-}\lim A_n$ if, and only if, $\mathscr{F}\text{-}\liminf \chi_{A_n}(x) = 1$.

(4) $\mathscr{F}\text{-}\limsup a_n = \mathscr{F}\text{-}\liminf -a_n$, and $(\mathscr{F}\text{-}\lim^+ A_n)^c = \mathscr{F}\text{-}\lim A_n^c$.

We say an ideal $\mathcal{I} \subseteq \mathscr{P}(\mathbb{N})$ is tall if for any infinite $F \subseteq \mathbb{N}$, there is $I \in \mathcal{I}$ such that $|I \cap F| = \mathbb{N}$. We call a family $\mathscr{A} \subseteq [\mathbb{N}]^{\mathbb{N}}$ countably hitting if for every collection $\{X_n : n \in \mathbb{N}\}\$ of countably many infinite subsets of N there exists $A \in \mathscr{A}$ such that for every $n \in \mathbb{N}$, $A \cap X_n$ is infinite. Notice that in order to prove that a family $\mathscr{A} \subseteq [\mathbb{N}]^{\mathbb{N}}$ is countably hitting it is enough to prove that for any partition of $\{P_n : n \in \mathbb{N}\}\$ of $\mathbb N$ into infinite sets there exists $A \in \mathscr{A}$ such that for every $n \in \mathbb{N}$, $A \cap P_n$ is infinite. This is because given an arbitrary family $\{X_n : n \in \mathbb{N}\}\$ of countably many infinite subsets of N we may apply the Disjoint Refinement Lemma to find a pairwise disjoint family $\{P_n : n \in \mathbb{N}\}\$ such that for every $n \in \mathbb{N}, P_n \subseteq X_n, P_n$ is infinite. So, we may find $A \in \mathscr{A}$ such that for every $n \in \mathbb{N}$, $A \cap P_n$ is infinite. It is easy to see this A is the desired witness for the original family. What we are calling a countably hitting is often referred to as ω -hitting.

An important class of filters are the maximal ones, called ultrafilters. An ultrafilter $\mathscr{U} \subseteq \mathscr{P}(\mathbb{N})$ is a *Q*-point if for every partition $\{F_n : n \in \mathbb{N}\}\$ of $\mathbb N$ into finite sets there exists $X \in \mathscr{U}$ such that for every $n \in \mathbb{N}, |X \cap F_n| \leq 1$. More generally (and dually), we call an ideal $\mathcal{I} \subseteq \mathscr{P}(\mathbb{N})$ a $Q^+(\mathbb{N})$ -ideal if for every partition $\{F_n : n \in \mathbb{N}\}\$ of N into finite sets there exists $X \in \mathcal{I}^+$ such that for every $n \in \mathbb{N}$, $|X \cap F_n| \leq 1$.

Ideals are naturally pre-ordered by the Katětov and Katětov-Blass orders. Given two ideals \mathcal{I},\mathcal{J} on $\mathbb N$ we write $\mathcal{I}\leq_K\mathcal{J}$ if there is a map $f:\mathbb N\to\mathbb N$ such that for any $I \in \mathcal{I}, f^{-1}[I] \in \mathcal{J}$, if the map is finite-to-one we write $\mathcal{I} \leq_{KB} \mathcal{J}.$

We consider $\mathscr{P}(\mathbb{N})$ equipped with the natural topology inherited from the product topology of $2^{\mathbb{N}}$ via characteristic functions. Whenever we talk about a subset of $\mathscr{P}(\mathbb{N})$ having any topological property: closed, Borel, analytic, etc., we refer to this topology.

We shall mention two tall F_{σ} ideals on countable sets. The first one is the ideal

$$
\mathcal{ED}_{fin} = \big\{ A \subseteq \Delta : \exists n, m \in \mathbb{N} \,\forall \, k \ge n \big| \{ i : (k, i) \in A \} \big| \le m \big\},\
$$

on the set $\Delta = \{(n,m) \in \mathbb{N}^2 : m \leq n\}$. The other, the Solecki's ideal S is the ideal on $\mathbb{N} = \{A \in \text{Clop}(2^{\mathbb{N}}) : \lambda(A) = 1/2\}$ (here λ is the Lebesgue measure on $2^{\mathbb{N}}$) generated by the sets $I_x = \{A \in \mathbb{N} : x \in A\}$, $x \in 2^{\mathbb{N}}$. The ideals are critical for properties considered in the paper:

THEOREM 2.2. (SOLECKI [\[14\]](#page-14-3)) Let $\mathscr F$ be a universally measurable filter. \mathscr{F} is Fatou if, and only if, for every $F \in \mathscr{F}^+$, $S \nleq_K \mathscr{F}^*|_F$.

PROPOSITION 2.3. ([\[5\]](#page-13-3)) An ultrafilter $\mathscr F$ is a Q-point if and only if $\mathcal{ED}_{fin} \nleq_{KB} \mathcal{F}^*$.

3. Measure-theoretic filters

The following properties of filters can be found (with slight modifications) in the literature (see e.g. [\[3,](#page-13-4) [7,](#page-14-4) [14\]](#page-14-3)). A filter $\mathscr F$ on $\mathbb N$ is

- (1) Fubini [\[11\]](#page-14-5) if for any finite measure space (Ω, Σ, μ) , any sequence $\{X_n \in$ $\Sigma: n \in \mathbb{N}$, and any $\epsilon > 0$, $\{n \in \mathbb{N} : \mu(X_n) > \epsilon\} \in \mathscr{F}^+$ implies $\lambda^*(\mathscr{F}\text{-}lim^+X_n) \geq \epsilon.$
- (2) Fatou [\[14\]](#page-14-3) if for any σ -finite measure space (Ω, Σ, μ) and any $f_n : \mathbb{N} \to$ $[0, \infty)$ measurable functions ^{[1](#page-4-1)} $\int \mathcal{F}$ - lim inf $f_n d\mu \leq \mathcal{F}$ - lim inf $\int f_n d\mu$.
- (3) Lebesgue [\[9\]](#page-14-2) if for any (Ω, Σ, μ) σ -finite measure space and any $f_n : \Omega \to$ $[0, \infty)$ measurable functions such that there is $f : \Omega \to [0, \infty)$ integrable such that $|f_n| \leq f$, $\mathscr{F} - \lim f_n = 0$ implies $\mathscr{F} - \lim \int f_n d\mu = 0$.

THEOREM 3.1. The following are equivalent:

- (1) $\mathscr F$ is Fatou.
- (2) $\mathscr F$ is Lebesgue.
- (3) For any finite measure space (Ω, Σ, μ) and any sequence $(X_n)_{n\in\mathbb{N}}$ of elements of Σ , if $\mu(\mathscr{F}\text{-}\lim X_n) = 0$, then $\mathscr{F}\text{-}\lim \mu(X_n) = 0$.
- (4) $\mathscr F$ is Fubini.
- (5) For any finite measure space (Ω, Σ, μ) and any sequence $(X_n)_{n\in\mathbb{N}}$ of elements of Σ , $\mu_*(\mathscr{F}\text{-}\lim X_n) \leq \mathscr{F}\text{-}\liminf \mu(X_n)$.

Proof. Let us prove (1) implies (2). It is clear that we can reduce the problem to the case where $(f_n)_n \in \mathbb{N}$ are measurable and non-negative and f is integrable such that $f_n \leq f$, so consider $g_n = f - f_n$. Applying the Fatou property we get

$$
\int f d\mu = \underbrace{\int}_{\text{max}} \mathcal{F} \cdot \liminf g_n d\mu \leq \mathcal{F} \cdot \liminf \int g_n d\mu
$$
\n
$$
= \int f d\mu + \mathcal{F} \cdot \liminf \int -f_n d\mu.
$$

¹Where $\int f d\mu = \sup \{ \int f' d\mu : f$ is integrable and $f' \leq f \}$

However, as $\mathscr{F}\text{-lim}\inf \int -f_n d\mu = -\mathscr{F}\text{-lim}\sup \int f_n d\mu$, we get

$$
\mathscr{F}\text{-}\limsup \int f_n d\mu = 0.
$$

As all the functions are non-negative we also know that the inferior limit is non-negative, so $\mathscr{F}\text{-lim}\int f_n d\mu = 0.$

For (2) implies (3), consider $X = \mathscr{F}\text{-}\lim X_n$ and $Y_n = X_n \setminus X$, then $\varnothing = \mathscr{F}\text{-}\lim Y_n$ and for every n, $\mu(Y_n) = \mu(X_n)$, because the space is finite there is a constant that bounds χ_{Y_n} so we get

$$
\mathscr{F}\text{-}\lim \mu(X_n) = \mathscr{F}\text{-}\lim \int \chi_{Y_n} d\mu = 0.
$$

For (3) implies (4), assume there is an $\epsilon > 0$ such that $\{n \in \mathbb{N} :$ $\mu(X_n) > \epsilon$ $\in \mathscr{F}^+$ but $\lambda^*(\mathscr{F}\text{-}\lim^+ X_n) < \epsilon$. Pick $X \in \Sigma$ such that $\mu(X) < \epsilon$ and $\mathscr{F}\text{-}\lim^+ X_n \subseteq X$, define $Y_n = X_n \setminus X$ and $0 < \delta = \epsilon - \mu(X)$, then ${n \in \mathbb{N} : \mu(Y_n) > \delta} \in \mathscr{F}^+$ but $\mathscr{F}\text{-}\lim Y_n = \emptyset$. This implies that the sequence of the measures of Y_n converges to 0 in the filter, in particular $\{n \in \mathbb{N} :$ $\mu(Y_n) < \delta$ $\in \mathscr{F}$, which is a contradiction.

For (4) implies (5), consider $X_n \in \Sigma$ and assume the property is false, then find $X \in \Sigma$, such that $\mathscr{F}\text{-lim inf }\mu(X_n) < \mu(X)$ and $X \subseteq \mathscr{F}\text{-lim }X_n$. As always, define $Y_n = X \setminus X_n$, so that if $0 < \delta = \mu(X) - \mathscr{F}\text{-lim inf }\mu(X_n)$ then ${n \in \mathbb{N} : \mu(Y_n) > \delta} \in \mathscr{F}$ and $\mathscr{F}\text{-}\lim Y_n = \varnothing$, which is impossible.

For (5) implies (1), it is clear we may restrict, again, our attention to a sequence of non-negative function $(f_n)_{n\in\mathbb{N}}$ bounded by f, all of them defined over a measure space. Define

$$
A_f = \{(x, t) \in \Omega \times [0, \infty) \, : \, 0 \le t < f(x)\}
$$

and for each $n \in \mathbb{N}$,

$$
B_n = \{(x, t) \in \Omega \times [0, \infty) : 0 \le t < f_n(x) \}.
$$

Define $\nu = \mu \times \lambda$ where λ is the Lebesgue measure. By Fubini's theorem we get $\nu(B_n) = \int f_n d\mu$ and $\int \mathscr{F}\text{-lim inf } g_n d\mu = \nu_*(\mathscr{F}\text{-lim } B_n)$ and that (A_f, ν) is finite and atomless, so we are done. \blacksquare

There are analogs for this properties where we only consider the measure space $(2^{\mathbb{N}}, \mathbb{B}(2^{\mathbb{N}}), \lambda)$, with λ the Haar measure on the Borel sets of $2^{\mathbb{N}}$. Under an additional hypothesis on the filter these notions are also equivalent. Recall that a filter $\mathscr F$ on $\mathbb N$ is universally measurable if it is measurable by any Borel measure on 2^N , where we are identifying a set with its characteristic function.

PROPOSITION 3.2. (SOLECKI [\[14\]](#page-14-3)) Let $\mathscr F$ be an universally measurable filter, assume the filter is Lebesgue with respect to the Haar measure over the Borel subsets of $2^{\mathbb{N}}$, then it is Lebesgue.

Proof. Consider an arbitrary finite measure space (Ω, Σ, μ) and a sequence ${X_n \in \Sigma : n \in \mathbb{N}}$ such that $\mu(\mathscr{F}\text{-}\lim X_n) = 0$. We may assume w.l.o.g. that $\mu(\Omega) = 1$. Call $X = \mathscr{F}\text{-lim } X_n$, and consider the sets $X' = X \times [0,1],$ $X'_n = X_n \times [0, 1]$ and the measure $\mu' = \mu \times \lambda$ on $\Omega' = \Omega \times [0, 1]$ where λ is the Lebesgue measure on [0, 1] so we get that $\mu'(X') = \mu(X)$ and for any $n \in \omega$, $\mu'(X'_n) = \mu(X_n)$. Notice that μ' is an atomless probability measure. By the Caratheodory and Sikorski theorems [\[13,](#page-14-6) Theorem 15.4 and Proposition 15.3] there is a measurable function $f : \Omega' \to 2^{\mathbb{N}}$ such that for any Borel set $B \subseteq 2^{\mathbb{N}}$ $\lambda'(B) = \mu'(f^{-1}(B))$ where λ' is the Haar measure on $2^{\mathbb{N}}$, and ${B_n \in \mathbb{B}(2^{\mathbb{N}}) : n \in \mathbb{N}}$ such that for any n, $\mu'(X'_n \Delta f^{-1}(B_n)) = 0$. Then $\lambda'_*(\mathscr{F}\text{-}\lim B_n) = 0$. Let $g: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be defined by $g(x)(n) = 1$ if and only if $x \in B_n$. The function g is Borel and $g^{-1}[\mathscr{F}] = \mathscr{F}\text{-lim } B_n$, so this last set is λ' -measurable. This implies $\lambda'(\mathscr{F}\text{-lim }B_n) = 0$, so $\mathscr{F}\text{-lim }\mu(X_n) = \mathscr{F}\text{-}$ $\lim \mu'(X'_n) = \mathscr{F}\text{-lim }\lambda'(B_n) = 0$ as desired.

By Solecki's theorem and the fact that $S \nleq_K \mathcal{ED}_{fin}$ [\[6\]](#page-13-5) we get the following result that generalizes [\[2,](#page-13-1) Proposition 6.2].

COROLLARY 3.3. Any $\mathscr F$ universally measurable filter such that for every $J \in \mathscr{F}^+$, $\mathscr{F}^*|_{J \leq K}$ \mathcal{ED}_{fin} is a Lebesgue Filter.

4. Q-point is necessary

In this section we will present a simple proof of the direct implication of the main theorem. To do so, let

$$
J = \big\{ A \subseteq \Delta : \ \forall k \big| \{ i : (k, i) \in A \} \big| \le 1 \big\}.
$$

Let $K_{\mathcal{ED}_{fin}} = \{x \in \{-1,1\}^{\mathbb{N} \times \mathbb{N}} : x^{-1}[\{-1\}] \in J\}$, which is clearly compact, and let $\dot{X} = C(K_{\mathcal{ED}_{fin}})$. Notice that $K_{\mathcal{ED}_{fin}}$ has the following property: Given any open subset U we can find $n_U \in \mathbb{N}$ such that for any $n \geq n_U$, $m \leq n$, and any $\eta \in \{-1,1\}$ there is $y \in U$ such that $y(n,m) = \eta$. This is so because for any open U we can find $s \in \{-1,1\}^{<\{N\times N\}}$ such that $\{t \in K_{\mathcal{ED}_{fin}} : s \subseteq t\} \subseteq$ U, then it is enough to take $n_U = \max\{n : \exists m(n,m) \in \text{dom}(s)\}.$

As a consequence of this property $K_{\mathcal{ED}_{fin}}$ is perfect, so it is homeomorphic to the Cantor set. We will draw another consequence of this property.

Consider the sequence $\{e_{(i,j)}\}_{(i,j)\in\Delta} \subseteq X$, defined by $e_{(i,j)}(x) = x(n,k)$ if $(i, j) = (n, k)$ and 0 otherwise. We claim it is L-orthogonal (under any enumeration of Δ). Consider $f \in X$, and pick $x \in K_{\mathcal{ED}_{fin}}$ such that $\eta \|f\| = f(x)$, pick $\epsilon > 0$ then for every $n \geq n_{\epsilon}$ and every $m \leq n$, we can find $y \in K_{\mathcal{ED}_{fin}}$ such that $\eta = y(n, m)$ and $|f(y) - f(x)| < \epsilon$, therefore:

$$
||f|| + 1 - \epsilon = |\eta||f|| + \eta| - \epsilon = |f(x) + y(n, m)| - \epsilon
$$

<
$$
< |f(y) + e_{(n,m)}(y)| \le ||f + e_{(n,m)}|| \le ||f|| + 1.
$$

Notice that for any $x \in K_{\mathcal{ED}_{fin}}$,

$$
\{(i,j)\in \Delta\,:\, e_{(i,j)}(x)\neq 1\}=\{(i,j)\in \Delta\,:\, x(i,j)=-1\}\in \mathcal{ED}_{fin}.
$$

So $(\mathcal{ED}_{fin})^*$ - lim $e_{(i,j)}(x) = 1$ for every $x \in K_{\mathcal{ED}_{fin}}$, recalling that $(\mathcal{ED}_{fin})^*$ is a Lebesgue filter we may conclude that $(\mathcal{ED}_{fin})^*$ -lim $e_{(i,j)} = 1$ in the weak^{*} topology, by the Riesz representation theorem.

Actually this sequence fulfills a stronger property:

THEOREM 4.1. Let $X = \mathcal{C}(K_{\mathcal{ED}_{fin}}), \{e_{(i,j)}\}_{(i,j)\in\Delta} \subseteq X$, and \mathcal{F} such that $\mathcal{ED}_{fin} \leq_{KB} \mathcal{F}^*$, then there is a natural subsequence such that its \mathcal{F} -limit in the weak topology is the constant map 1.

Proof. Assume $\mathcal{ED}_{fin} \leq_{KB} \mathcal{F}^*$ and a witness of $\varphi : \mathbb{N} \to \mathbb{N}^2$. Consider the subsequence $\{e_{\varphi(n)}\}_{n\in\mathbb{N}}$, we already know its L-orthogonal because φ is finite to 1.

But because φ is a witness we get that for any $x \in K_{\mathcal{ED}_{fin}}$, $\mathscr{F}\text{-}\lim e_{\varphi(n)}(x)$ $= 1$, as the next computation shows

$$
\{n \in \mathbb{N} : e_{\varphi(n)}(x) \neq 1\} = \{n \in \mathbb{N} : x(\varphi(n)) = -1\}
$$

$$
\subseteq \varphi^{-1} [\{(i, j) \in \Delta : x(i, j) = -1\}] \in \mathcal{F}^*.
$$

Appealing again to the Lebesgue property we get the desired result.

COROLLARY 4.2. Given an ultrafilter $\mathcal U$ which is not a Q-point, there is a an L-orthogonal sequence $(x_n)_{n\in\mathbb{N}}$ in $\mathcal{C}(K_{\mathcal{ED}_{fin}})$ such that the \mathcal{U} -lim x_n in the weak topology is not an L-orthogonal element.

5. Q-point is sufficient

In this section we will prove the inverse implication of the main theorem. We will take advantage of the following fact:

THEOREM 5.1. (HRUŠÁK-MEZA-MINAMI, $[8]$) Let I be an analytic ideal, the following are equivalent:

- (1) $\mathcal I$ is a $Q^+(\mathbb N)$ -ideal.
- (2) $\mathcal{ED}_{fin} \nleq_{KB} \mathcal{I}.$
- (3) $\mathcal I$ is not countably hitting.

This fact readily provides a useful characterization of Q-points (compare to the Mathias' characterization of selective ultrafilters [\[12,](#page-14-1) Theorem 2.12]).

COROLLARY 5.2. Let U be a ultrafilter, the following are equivalent:

- (1) $\mathscr U$ is a Q-point.
- (2) For every F_{σ} ideal $\mathcal I$ that is countably hitting, $\mathscr U \cap \mathcal I \neq \emptyset$.
- (3) For every analytic ideal $\mathcal I$ that is countably hitting, $\mathcal U \cap \mathcal I \neq \emptyset$.

Proof. Let us start with (1) implies (3). Assume $\mathcal U$ is a Q-point. Now pick $\mathcal I$ a countably hitting ideal, if $\mathcal I$ is analytic, then $\mathcal I$ is not a $Q^+(\mathbb N)$ -ideal, so $\mathcal{U} \nsubseteq \mathcal{I}^*$.

(3) implies (2) is trivial.

Now for (2) implies (1). Assume U is not a Q-point, so take $f : \mathbb{N} \to \mathbb{N}$ witnessing that $\mathscr{U}^* \geq_{KB} \mathcal{ED}_{fin}$, and consider $\mathcal{I} = \{f^{-1}[I] : I \in \mathcal{ED}_{fin}\}\$. \mathcal{I} is F_{σ} and countably hitting because \mathcal{ED}_{fin} is so, but clearly $\mathcal{I} \cap \mathcal{U} = \emptyset$.

We present two applications of this result. To state them we need to introduce two classes of ideals. Let X be a Banach space, $(x_n)_{n\in\mathbb{N}}$ a sequence in B_X , $(\epsilon_n)_{n\in\mathbb{N}}$ a sequence of positive real numbers converging to zero, $Z \subseteq$ X a separable subspace of X, and $(F_n)_{n\in\mathbb{N}}$ an increasing sequence of finite dimensional subspaces of X such that $Z = \overline{\bigcup_{n \in \mathbb{N}} F_n}$. For any $B \subseteq \mathbb{N}$, $n \in \mathbb{N}$ call $B(n)$ the *n*-th element of B, B −→ $(n) = \{A \subseteq B : \min A \ge B(n)\},\$ and for $B \subseteq \mathbb{N}$ call $C[B] = \{w \in X : w \in \overline{\text{conv}}\{x_m : m \in B\}\}\$ and $C_{c_0}[B] = \{w \in X : w \in \overline{\text{conv}}\{x_m : m \in B\}\}\$ $X: w \in \overline{\text{conv}}_{c_0}\{x_m : m \in B\}\},\$ then we define the sets

$$
\mathcal{L}_{(F_n)_{n \in \mathbb{N}}} = \left\{ B \subseteq \mathbb{N} : \forall n \in \mathbb{N}, \ \forall A \in B(n), \ \forall w \in C[A], \ \forall y \in F_n, \right\}
$$

$$
(1 - \epsilon_n)(1 + ||y||) \le ||y + w|| \left\}
$$

and

$$
\mathcal{S}_{(F_n)_{n \in \mathbb{N}}} = \left\{ B \subseteq \mathbb{N} : \forall n \in \mathbb{N}, \ \forall A \in B(n), \ \forall w \in C_{c_0}[A], \ \forall y \in F_n, \right\}
$$

$$
|(\|y+w\|) - 1| < \epsilon_n \max{\{\|y\|, 1\}},
$$

and consider $\mathcal{I}_{(F_n)_{n\in\mathbb{N}}}$ and $\mathcal{J}_{(F_n)_{n\in\mathbb{N}}}$ as the ideals generated respectively by ${\mathcal L}_{(F_n)_{n \in {\mathbb N}}}$ and $\mathcal{S}_{(F_n)_{n \in {\mathbb N}}}.$

It is straightforward to check that $\mathcal{L}_{(F_n)_{n\in\mathbb{N}}}$ and $\mathcal{S}_{(F_n)_{n\in\mathbb{N}}}$ are closed, so $\mathcal{I}_{(F_n)_{n\in\mathbb{N}}}$ and $\mathcal{J}_{(F_n)_{n\in\mathbb{N}}}$ are F_{σ} ideals. We shall prove that they are both countably hitting. For the first one we need the following result [\[2,](#page-13-1) Lemma 3.1]:

LEMMA 5.3. ([\[2\]](#page-13-1)) Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an L-orthogonal sequence, $\epsilon > 0$ and $F \subseteq X$ a finite dimensional subspace of X, then, there exists an $m \in \mathbb{N}$ such that for every $n \geq m$, $t \in \mathbb{R}$, and $y \in F$

$$
||y + tx_n|| \ge (1 - \epsilon)(||y|| + |t|).
$$

THEOREM 5.4. Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an L-orthogonal sequence, $(\epsilon_n)_{n\in\mathbb{N}}$ a sequence of positive real numbers, $Z \subseteq X$ a separable subspace of X, and $(F_n)_{n\in\mathbb{N}}$ an increasing sequence of finite dimensional subspaces of X such that $Z = \overline{\bigcup_{n \in \mathbb{N}} F_n}$, $\{P_n : n \in \mathbb{N}\}\$ a partition of N into infinite sets. Then there exists a subsequence $(x_{n_m})_{m\in\mathbb{N}}$ such that for every $i \in \mathbb{N}$, $|\{n_m \in \mathbb{N} : n_m \in P_i\}| = \mathbb{N}$ and for every $k \in \mathbb{N}$, $y \in F_k$, $w \in \overline{\text{conv}}\{x_{n_m} : m \geq k\},\$

$$
||y+w|| \ge (1-\epsilon_k)(||y||+1).
$$

Proof. Consider $f : \mathbb{N} \to \mathbb{N}$ such that $n \in P_{f(n)}$. Pick a sequence $(\delta_n)_{n \in \mathbb{N}}$ of positive real numbers such that for every $n \in \mathbb{N}$, $1 - \epsilon_n < \prod_{i=n+1}^{\infty} (1 - \delta_i)$. We will construct the subsequence by recursion, so assume we have built our sequence up to step k, let $E_{k+1} = \langle F_{k+1} \cup \{x_{n_0}, \ldots x_{n_k}\} \rangle$ and apply the lemma with δ_{k+1} to get an N such that for any $n \geq N$, $y \in E_{k+1}$, and $\lambda \in \mathbb{R}$,

$$
||y + \lambda x_n|| \ge (1 - \delta_{k+1})(||y|| + |\lambda|)
$$

so pick $n_{k+1} \in P_{f(k+1)}$ such that $\max\{N, n_k\} < n_{k+1}$.

Observe that for any $i \in \mathbb{N}$, $\{n_m \in \mathbb{N} : m \in P_i\} \subseteq P_i$, so the first condition is met. To check the second condition consider $k \in \mathbb{N}$, $y \in F_k$, and

 $w \in \overline{\text{conv}}\{x_{n_m} : m \geq k\}.$ So, we have a sequence $(t_j)_{k \geq j}$ of non-negative reals such that $\sum_{k=j}^{\infty} t_j = 1$ and $w = \sum_{k=j}^{\infty} t_j x_{m_j}$, then for any $l > k$

$$
\left\|y - \sum_{k\leq j}^{l} t_j x_{m_j}\right\| \geq (1 - \delta_l) \left(\left\|y - \sum_{k\leq j}^{l-1} t_j x_{m_j}\right\| + t_l \right)
$$

$$
\geq (1 - \delta_l) (1 - \delta_{l-1}) \left(\left\|y - \sum_{k\leq j}^{l-2} t_j x_{m_j}\right\| + t_l + t_{l-1} \right)
$$

$$
\vdots
$$

$$
\geq \prod_{k\leq j}^{l} (1 - \delta_j) \left(\left\|y\right\| + \sum_{k\leq j}^{l} t_j \right)
$$

$$
\geq \prod_{k\leq j}^{\infty} (1 - \delta_j) \left(\left\|y\right\| + \sum_{k\leq j}^{l} t_j \right)
$$

$$
> (1 - \epsilon_k) \left(\left\|y\right\| + \sum_{k\leq j}^{l} t_j \right).
$$

It is evident that the sequence $(y - \sum_{k=1}^{l} t_j x_{m_j})_{l \in \mathbb{N}}$ converges in norm to $y - \sum_{k \leq j}^{\infty} t_j x_{m_j}$, so the previous computation ensures that $||y - \sum_{k \leq j}^{\infty} t_j x_{m_j}||$ $\geq (1 - \epsilon_k)(||y|| + 1).$ ■

This result directly implies that the associated ideal $\mathcal{I}_{(F_n)_{n\in\mathbb{N}}}$ is countably hitting. Avilés, Martínez-Cervantes, and Rueda Zoca [\[2,](#page-13-1) Lemma 3.3] using Maurey's technique also prove a result which can be stated in the following way.

LEMMA 5.5. ([\[2\]](#page-13-1)) Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an L-orthogonal sequence, $(\epsilon_n)_{n\in\mathbb{N}}$ a sequence of positive real numbers converging to zero, $Z \subseteq X$ a separable subspace of X, and $(F_n)_{n\in\mathbb{N}}$ an increasing sequence of finite dimensional subspaces of X such that $Z = \bigcup_{n \in \mathbb{N}} F_n$. If $B \in \mathcal{I}_{(F_n)_{n \in \mathbb{N}}}$ and $u \in \bigcap_{n\in\mathbb{N}} \overline{\text{conv}}^{w^*} \{x_m : m \in B, m \geq n\}$ then for any $y \in Z$, $||u + y|| =$ $||u|| + ||y|| = 1 + ||y||.$

COROLLARY 5.6. Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an L-orthogonal sequence, and U a Q-point, if $x^{**} = U$ - $\lim x_n$, then x^{**} is an L-orthogonal element.

Proof. Consider $z \in X$ and $(\epsilon_n)_{n \in \mathbb{N}}$ a sequence of positive reals converging to zero. Let $\mathcal{I}_{\langle z \rangle}$ be the associated ideal, by Theorem [5.4](#page-9-0) we know $\mathcal{I}_{\langle z \rangle}$ is an F_{σ} ,

countably hitting ideal of N, so by Theorem [5.1](#page-8-0) it is not $Q^+(\mathbb{N})$, which implies that $\mathcal{U} \cap \mathcal{I}_{\langle z \rangle} \neq \emptyset$, so take $I \in \mathcal{U} \cap \mathcal{I}_{\langle z \rangle}$, then there exist $J_0, \ldots, J_m \in \mathcal{L}_{\langle z \rangle}$ such that $I \subset \bigcup_{i \leq m} J_i$. Because U is an ultrafilter there is $i \leq m$ such that $J_i \in \mathcal{U}$, this implies that $x^{**} \in \text{cl}_{w^*}(\{x_n : n \in J_i\})$ so by the previous lemma $||u + z|| = 1 + ||z||.$ ■

The second result follows using similar techniques. We need an analogue to Lemma [5.3](#page-9-1) this result is presented as [\[1,](#page-13-2) Lemma 2.5].

LEMMA 5.7. ([\[1\]](#page-13-2)) Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an S sequence, $\epsilon > 0$ and $F \subseteq X$ a finite dimensional subspace of X, then, there exists an $m \in \mathbb{N}$ such that for every $n \geq m$, $t \in \mathbb{R}$, and $y \in F$

$$
\left| \|y+tx_n\| - \max\{\|y\|, |t|\} \right| < \epsilon \max\{\|y\|, |t|\}.
$$

THEOREM 5.8. Let X be a Banach space, $(x_n)_{\in \mathbb{N}}$ an S sequence, $(\epsilon_n)_{n\in \mathbb{N}}$ a sequence of positive real numbers, $Z \subseteq X$ a separable subspace of X, and $(F_n)_{n\in\mathbb{N}}$ an increasing sequence of finite dimensional subspaces of X such that $Z = \overline{\bigcup_{n \in \mathbb{N}} F_n}$, $\{P_n : n \in \mathbb{N}\}\$ a partition of $\mathbb N$ into infinite sets. Then there exists a subsequence $(x_{n_m})_{m\in\mathbb{N}}$ such that for every $i \in \mathbb{N}$, $|\{n_m \in \mathbb{N} : n_m \in \mathbb{N}\}|$ $P_i\}|=\mathbb{N}$ and for every $k \in \mathbb{N}$, $y \in E_k = \langle F_k \cup \{x_{n_i} : i \le k\} \rangle$, $w \in \text{conv}_{c_0}\{x_{n_m} : i \le k\}$ $m \geq k$,

$$
\big| \|y+w\| - \max\{\|y\| \,, 1\} \big| < \epsilon_k \max\{\|y\| \,, 1\}.
$$

Proof. Consider, again, $f : \mathbb{N} \to \mathbb{N}$ such that $n \in P_{f(n)}$. Pick a sequence $(\delta_n)_{n\in\mathbb{N}}$ of positive real numbers such that for every $n \in \mathbb{N}$,

$$
1 - \epsilon_n < \prod_{i=n+1}^{\infty} (1 - \delta_i) < \prod_{i=n+1}^{\infty} (1 + \delta_i) < 1 + \epsilon_n.
$$

We will, once again, construct the subsequence by recursion, so assume we have built our sequence up to step k, consider E_{k+1} and apply the lemma with δ_{k+1} to get an N such that for any $n \geq N$, $y \in E_{k+1}$, and $t \in \mathbb{R}$,

$$
\left| \|y+tx_n\| - \max\{\|y\|, |t|\} \right| < \delta_{k+1} \max\{\|y\|, |t|\}.
$$

so pick $n_{k+1} \in P_{f(k+1)}$ such that $\max\{N, n_k\} < n_{k+1}$.

Once again, for any $i \in \mathbb{N}$, $\{n_m \in \mathbb{N} : m \in P_i\} \subseteq P_i$. To check the second condition consider $k \in \mathbb{N}$, $y \in E_k$, and $w \in \overline{\text{conv}}_{c_0}\{x_{n_m} : m \geq k\}$. So, we have a sequence $(t_j)_{k=j}^l$ of reals such that $\max\{|t_j| : k \leq j \leq l\} = 1$ and $w = \sum_{k=j}^{l} t_j x_{m_j}$, then

$$
\left\|y + \sum_{k \leq j}^{l} t_j x_{m_j} \right\| = \left\| \left(y + \sum_{k \leq j}^{l-1} t_j x_{m_j} \right) + t_l x_{m_l} \right\|
$$

$$
< (1 + \delta_l) \left(\max \left\{ \left\| y + \sum_{k \leq j}^{l-1} t_j x_{m_j} \right\|, |t_l| \right\} \right)
$$

$$
= (1 + \delta_l) \left(\max \left\{ \left\| \left(y + \sum_{k \leq j}^{l-2} t_j x_{m_j} \right) + t_{l-1} x_{m_{l-1}} \right\|, |t_l| \right\} \right)
$$

$$
< (1 + \delta_l) (1 + \delta_{l-1}) \left(\max \left\{ \left\| \left(y + \sum_{k \leq j}^{l-2} t_j x_{m_j} \right) \right\|, |t_{l-1}|, |t_l| \right\} \right)
$$

$$
\vdots
$$

$$
< \prod_{k \leq j}^{l} (1 + \delta_j) \left(\max \left\{ \|y\|, \max\{|t_j| : k \leq j \leq l\} \right\} \right)
$$

$$
< (1 + \epsilon_n) \max\{\|y\|, 1\}.
$$

Obviously the opposite inequality is proved in a similar way. \blacksquare

Our final result takes advantage of the following fact [\[1,](#page-13-2) Lemma 2.4].

LEMMA 5.9. Let X be a Banach Space and $\{C_\gamma : \gamma \in \Gamma\}$ a family of bounded convex sets in X^{**} with the finite intersection property and such that for every $\epsilon > 0$ and $x \in X$ there is $\gamma \in \Gamma$ such that for every $x^{**} \in C_{\gamma}$,

$$
|\|x+x^{**}\|-\max\{\|x\|\, ,1\}|<\epsilon\max\{\|x\|\, ,1\}.
$$

Then, there is an S-element in $X^{(4)}$.

COROLLARY 5.10. Let X be a Banach space, $(x_n)_{n\in\mathbb{N}}$ and S-sequence, if there is $\mathscr U$ a Q-point, then there is $x \in X^{(4)}$ an S-element.

Proof. Fix (ϵ_n) converging to zero by applying Theorem [5.8](#page-11-0) to the subspace 0 (and relabeling if necessary), we may assume that for any $n \in \mathbb{N}$, any $i \leq n$, and any $y \in \text{conv}_{c_0}\{x_j : j > n\}$, $|||x_i - y|| - 1| < \epsilon_n$. Now, given $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$ define $x_{A(n)} = \sum_{i \leq A(n)} x_i$. Because of the previous inequality the set $\{x_{A(n)} : n \in \mathbb{N}\}\$ is bounded for any A. So we can fix y_A^{**} a w^{*}-cluster point of it in $B_{X^{**}}$. Define $C_A = \text{conv}\{y_B^{**} : B \subseteq A, B \in \mathcal{U}\}\)$, it

is enough to show that ${C_A : A \in \mathcal{U}}$ satisfies the hypothesis of the previous lemma. So, the only missing piece is the inequality, so take $y \in X$ and $\epsilon > 0$. Consider now $\mathcal{J}_{\langle y \rangle}$, it is clear it is F_{σ} because $\mathcal{S}_{\langle y \rangle}$ is closed, and the previous theorem implies that it is countably hitting, so $\mathscr{U} \cap \mathcal{J}_{\langle y \rangle} \neq \emptyset$, the same argument as before shows there is $A \in \mathscr{U} \cap \mathcal{S}_{\langle y \rangle}$. We claim C_A is the desired witness, pick $z^{**} \in C_A$, and express it as $z^{**} = \sum_{i=0}^m t_i y_{B_i}^{**}$, because every $B_i \in \mathscr{U}$ we may choose $k \in \bigcap_{i \leq m} B_i$. Consider

$$
D_{A,k} = \text{conv}\{x_{B(n)} : B \subseteq A, B \in \mathcal{U}, k \in B, B(n) \ge k\}.
$$

Notice that $x^{**} \in \overline{D_{A,k}}^{w^*}$ and that $D_{A,k} \subseteq \text{conv}_{c_0} \{x_i : i \in A\}$ and even more, if $z \in D_{A,k}$ and we express it as a c_0 -convex combination, $z = \sum_{i=0}^n t_i x_i$, then $\max\{|t_i| : i \leq n\} = t_k = 1$. Now, the fact that $A \in \mathcal{S}_{\langle y \rangle}$ implies that $|(\|z+y\|)-1| < \epsilon_n \max\{|y\|,1\}$ for any $z \in D_{A,k}$, this easily implies that $||(||z^{**} + y||) - 1| < \epsilon_n \max{||y||}, 1$ for any $z^{**} \in \overline{D_{A,k}}^{w^*}$, in particular for our chosen x^{**} .

ACKNOWLEDGEMENTS

We thank Antonio Avilés for drawing our attention to the subject and for fruitful discussions. We also thank the referee for a careful reading of the manuscript and helpful suggestions which greatly improved the paper.

REFERENCES

- [1] A. AVILÉS, G. MARTÍNEZ-CERVANTES, A. RUEDA ZOCA, Banach spaces containing c_0 and elements in the fourth dual, J. Math. Anal. Appl. 508 (2) (2022), Paper No. 125911, 10 pp.
- [2] A. AVILÉS, G. MARTÍNEZ-CERVANTES, A. RUEDA ZOCA, L-orthogonal elements and L-orthogonal sequences, Int. Math. Res. Not. IMRN (2023), n. 11, 9128 – 9154.
- [3] D.H. Fremlin, Measure-centering ultrafilters, in "Ultrafilters across mathematics", Contemp. Math., 530, Amer. Math. Soc., Providence, RI, 2010, $73 - 120.$
- [4] G. GODEFROY, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. $95(1)$ (1989), 1-15.
- [5] M. HRUŠÁK, Combinatorics of filters and ideals, in "Set theory and its ap-, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011, plications", Contemp. Math., 533, Amer. 26–69, DOI: [10.1090/conm/533/10503](https://doi.org/10.1090/conm/533/10503).
- [6] M. HRUŠÁK, Katětov order on Borel ideals, Arch. Math. Logic 56 (2017), $831 - 847.$
- [7] M. HRUŠÁK, D. MEZA-ALCÁNTARA, Katětov order, Fubini property and Hausdorff ultrafilters, Rend. Istit. Mat. Univ. Trieste 44 (2012), 503 – 511.
- [8] M. HRUŠÁK, D. MEZA-ALCÁNTARA, H. MINAMI, Pair-splitting, pairreaping and cardinal invariants of F_{σ} -ideals, *J. Symbolic Logic* **75** (2) (2010), $661 - 677$.
- [9] V. KADETS, A. LEONOV, Dominated convergence and Egorov theorems for filter convergence, J. Math. Phys. Anal. Geom. 3 (2007), 196 – 212.
- [10] V. KADETS, V. SHEPELSKA, D. WERNER, Thickness of the unit sphere, ℓ_1 -types, and the almost Daugavet property, *Houston J. Math.* **37** (2011), 867 – 878.
- [11] V. Kanovei, M. Reeken, New Radon-Nikodym ideals, Mathematika 47 (1- 2) (2000), 219 – 227.
- [12] A.R.D. MATHIAS, Happy families, Ann. Math. Logic 12(1) (1977), 59-111.
- [13] H.L. ROYDEN, "Real analysis", 2d ed., Macmillan Publishing Company, New York, 1968.
- [14] S. SOLECKI, Filters and sequences, Fund. Math. **163** (3) (2000), 215 – 228.