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1. Introduction

Characteristic properties of special classes of convex sets became an estab-
lished topic of convex geometry on the turn of 20th century. Bonnesen and
Fenchel [13, §14–16] gave an overview of known results in this field, published
prior to 1934. The canonical list of such special classes traditionally includes
regular polytopes, balls, ellipsoids, centrally symmetric convex bodies, and
bodies of constant width. Numerous properties of these classes were exten-
sively studied in the literature, with books and surveys entirely devoted to
them (see, for instance, Coxeter [22], Heil and Martini [59], Martini, Monte-
jano, and Oliveros [70], McMullen [75], Petty [85], and Soltan [108]).

Nowadays, a wider interpretation of the concept of special convex set also
includes various classes of polytopes, regular and strictly convex sets, and fam-
ilies of convex bodies defined by means of certain groups of transformations
(like homotheties, symmetries, congruences, similarities, affine transforma-
tions, etc).

This survey describes known results and still open problems on charac-
teristic properties of classes of pairwise homothetic convex sets in the n-
dimensional Euclidean space Rn. Despite a wide interest towards homothety
classes of convex sets, no separate collection of results or surveys on this topic
are known in the literature. The present paper aims to fill in this gap (at least
partly) and to give a uniform presentation of existing results and still open
problems. It is divided into various sections, as given by the above table of
contents.

Besides the intuitive geometric appeal and simplicity of their description,
the homothety classes have multiple connections with various branches of
convex geometry. Homothetic convex sets are studied in Brunn-Minkowski
theory (see Schneider [95]), geometric inequalities, and geometric tomography,
designed to cover the area of mathematics dealing with retrieval of information
about a geometric object from data about its sections and projections (see,
e.g., Gardner [35]).

Crystallography and the geometry of numbers often deal with tilings of
space by translates of a given polytope. Such polytopes are called paral-
lelohedra, and there is a large variety of research on this topic (see, e.g.,
Gruber [55]).

Furthermore, combinatorial and discrete geometry of convex sets deals
with numerous problems on packing and covering that involve various fam-
ilies of translates and homothety classes of convex bodies (see, for instance,
Boltyanski, Martini, Soltan [10], Böröczky [14], and Brass, Moser, Pach [15]).
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To achieve the uniformity of presentation, we assume throughout the text
that all convex sets in question are n-dimensional. Such a restriction does not
affect the generality of the argument, since we always can consider the sets in
their affine spans, where they become full-dimensional.

We conclude this section with necessary definitions and terminology (see,
e.g., [109] for a detailed account). Nonempty sets X1 and X2 in the n-
dimensional Euclidean space Rn are called homothetic if X1 = v + λX2 for
a suitable vector (point) v ∈ Rn and a nonzero scalar λ. Furthermore, X1

and X2 are directly (inversely) homothetic if λ > 0 (respectively, λ < 0). In
particular, X1 and X2 are translates of each other if λ = 1, and are symmetric
to each other if λ = −1. If λ ̸= 1, then X1 = s+ λ(X2 − s), where the point
s = v/(1 − λ) is called the center of homothety. A nonempty set X ⊂ Rn is
centrally symmetric provided there is a point v ∈ Rn such that X = v −X
(in this case s = v/2 is the center of symmetry of X). The origin (zero vector)
of Rn is denoted o.

A plane L ⊂ Rn of dimension m, 0 ≤ m ≤ n, is a translate of an m-
dimensional subspace S ⊂ Rn: L = c+S for a suitable vector c ∈ Rn. Planes
L1 and L2 are parallel provided they are translates of each other. A parallel
(orthogonal) projection f of Rn onto the plane L = c+ S is a mapping of the
form f(x) = c + g(x − c), where g is a linear (orthogonal) projection of Rn

onto the subspace S.

A hyperplane is a plane of dimension n− 1; it can be described as

H = {x ∈ Rn : x·e = γ}, e ̸= o, γ ∈ R, (1)

where x·e means the dot product of x and e. Every hyperplane of the form
(1) determines the opposite closed halfspaces

V1 = {x ∈ Rn : x·e ≤ γ} and V2 = {x ∈ Rn : x·e ≥ γ}. (2)

Positive multiples λe of the vector e in (2) are called outward (inward) normal
vectors of V1 (of V2).

In a standard way, a hyperplane H ⊂ Rn supports a nonempty set X ⊂
Rn if H meets X such that X is contained in one of the closed halfspaces
determined by H. A closed halfspace V ⊂ Rn supports X if X ⊂ V and the
boundary hyperplane of V supports X.

By a convex solid in Rn we will mean an n-dimensional closed convex set
in Rn, possibly unbounded. A convex body is a bounded convex solid. A
convex set is called line-free if it contains no line. A nonempty intersection of
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finitely many closed halfspaces of Rn is called a polyhedron, and a bounded
polyhedron is a polytope.

A nonempty set C in Rn is called a cone with apex p ∈ Rn if p+λ(x−p) ∈
C whenever λ ≥ 0 and x ∈ C. (Obviously, this definition implies that p ∈ C,
although a stronger condition λ > 0 can be beneficial; see, e.g., [65].) The
cone C is called convex if it is a convex set.

For a nonempty set X ⊂ Rn and a point p ∈ Rn, the generated cone
Cp(X) with apex p is defined by

Cp(X) = {p+ λ(x− p) : x ∈ X, λ ≥ 0}.

The cone Cp(X) is convex if X convex. Furthermore, for any point v ∈ Rn

and a scalar λ > 0, one has

Cv+λp(v + λX) = v + λCp(X) = v + (λ− 1)p+ Cp(X). (3)

The recession cone of a convex set K ⊂ Rn is defined by

recK = {e ∈ Rn : x+ λe ∈ K whenever x ∈ K and λ ≥ 0}.

If K is closed, then recK is a closed convex cone with apex o, and recK ̸= {o}
if and only if K is unbounded. The lineality space of K is the subspace given
by linK = recK ∩ (− recK). If K is closed, then linK = {o} if and only if
K contains no lines.

2. Homothety conditions

This section contains a brief account of geometric results in which the
concept of homothety appear as a requirement or a necessary tool. We start
with the following theorem that plays an important role in classical convex
geometry.

Theorem 2.1. (Brunn-Minkowski) For convex bodies K,L ⊂ Rn and
a scalar 0 < λ < 1, the volumes of K, L and (1 − λ)K + λL satisfy the
inequality

V ((1− λ)K + λL)1/n ≥ (1− λ)V (K)1/n + λV (L)1/n. (4)

Furthermore, equality in (4) holds if and only if K and L are directly homo-
thetic.



classes of homothetic convex sets 139

Theorem 2.1 was discovered by Brunn (see [16, Chapter III] and [17,
Chapter III]) for dimensions n ≤ 3. Its importance was emphasized by
Minkowski, who gave an analytic proof for the n-dimensional case (see [78,
§ 56 and § 57]) and characterized the equality case. Numerous variations and
generalizations of this result, called nowadays the Brunn-Minkowski Theory,
form one of the central fields of modern convex geometry (see, e.g., the survey
of Gardner [34] and the monograph of Schneider [95] for historical references
and a variety of related facts).

The next result is related to the study of intersection bodies, which has
an essential role in the dual Brunn-Minkowski theory and in geometric to-
mography. We recall that a star body K ⊂ Rn is a nonempty set whose
radial function ρK(e), defined on the unit sphere Sn−1 of Rn, is positive and
continuous. Accordingly,

K =
{
te : 0 ≤ t ≤ ρK(e), e ∈ Sn−1

}
.

The intersection body IK of a star-body K was introduced and studied by
Lutwak [67], who defined IK as the star-body given by the positive radial
function ρIK(e):

ρIK(e) = Voln−1(K ∩ e⊥), e ∈ Sn−1,

where Voln−1 stands for the (n − 1)-dimensional volume and e⊥ denotes the
(n− 1)-dimensional subspace of Rn orthogonal to e.

In 1956 Busemann and Petty posed the problem (see [20], Problem 5)
whether solid ellipsoids are the only convex bodies for which the family of
special inscribed cones have the same volume. Reformulating this problem
in affine terms, Lutwak [68] asked whether solid ellipsoids centered at the
origin o are the only star-bodies K ⊂ Rn for which the bodies I(IK) and K
are directly homothetic; equivalently, that I(IK) = cK, where c = c(K) is
a suitable positive scalar. The recent preprint of Milman, Shabelman, and
Yehudayoff [76] affirmatively answers Lutwak’s question, as given below.

Theorem 2.2. Let K be a star-body in Rn, n ≥ 3. Then I(IK) = cK for
a suitable scalar c > 0 if and only if K is a solid ellipsoid centered at o.

Another instance is the homothety problem for floating bodies. We recall
that, given a convex body K ⊂ Rn and a scalar δ > 0, the floating body
Kδ is defined as the intersection (possibly empty) of all closed halfspaces
whose bounding hyperplanes cut off a set of volume δ from K. Sharpening



140 v. soltan

the assertions from [97] and [115], Werner and Ye [122] proved the following
result.

Theorem 2.3. Given a convex body K ⊂ Rn, there exists a scalar
δ(K) > 0 such that the conditions below are equivalent:

(a) the floating body Kδ is directly homothetic to K for some 0 < δ < δ(K),

(b) K is a solid ellipsoid.

One more example gives the Choquet representation theory in ordered
vector spaces (see Choquet [21] and Phelps [87]). Namely, if C = {x ∈ E |
x ≥ o} is the positive cone of an ordered vector space E, and if S is a convex
base of C, then E is a vector lattice if and only if S is a Choquet simplex;
which means that every nonempty intersection of directly homothetic copies
of S is again a directly homothetic copy of S or a singleton:

(u+ λS) ∩ (v + µS) = w + νS, u, v, w ∈ E, λ, µ > 0, ν ≥ 0.

In finite dimension, line-free closed Choquet simplices are precisely the usual
simplices and simplicial cones (see the survey [99]).

3. Homothetic projections

It is easy to see that parallel projections of homothetic sets X1 and X2

on a plane L ⊂ Rn are homothetic to each other (see Figure 1). Indeed, let
X1 = v + λX2, with v ∈ Rn and λ ̸= 0. If L = c + S for a suitable vector

X1 X2

Figure 1: Parallel projections of homothetic sets.

c ∈ L and a subspace S of Rn, then a parallel projection f of Rn on L can be
given as f(x) = c+ g(x− c), where g is a linear projection of Rn on S. With
u = (1− λ)(c− g(c)) + g(v), we have
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f(X1) = f(v + λX2) = c+ g(v + λX2 − c)

= (1− λ)(c− g(c)) + g(v) + λ(c+ g(X2 − c)) = u+ λf(X2).

A natural question here is whether the setsX1 andX2 in Rn are homothetic
themselves provided their parallel (or even only orthogonal) projections on
every proper plane of Rn are homothetic. Generally, this is not true (see
examples below), but the question has an affirmative answer for the case of
convex bodies, as described below.

In 1926, Bonnesen [11] (see also [12, p. 128]) proved that two convex bodies
in R3 are directly homothetic if and only if the orthogonal projections of these
bodies on every plane are directly homothetic, where the similarity ratio of
the projections is the same for all projection planes. Three years later, Süss
[116] announced a similar statement for a more general case, which allows a
similarity ratio of the projections be depend on the projection plane. However,
as mentioned by Bonnesen and Fenchel [13, p. 34], the proof there is not
formulated correctly, and an accurate and simplified presentation was given
later by Süss [117]. Following [116], other analytical proofs of this fact were
given by Kubota [64] and Nakajima [82, 83].

Since the argument of Süss [117] can be routinely extended to the case
n ≥ 3, Bonnesen and Fenchel [13, p. 13] formulated in 1934 the following
result as a known fact.

Theorem 3.1. ([117]) Convex bodies K1 and K2 in Rn, n ≥ 3, are di-
rectly homothetic if and only if the orthogonal projections of these bodies
on every hyperplane are directly homothetic, where the homothety ratio may
depend on the projection hyperplane.

The following example shows that the assumption on K1 and K2 in Theo-
rem 3.1 cannot be relaxed by assuming that they are only solid and bounded
(possibly nonclosed).

Example 3.2. It is easy to see that the following distinct convex sets K1

and K2 in R2 have identical parallel projections on every line in R2:

K1 = {(x, y) : 0 < x ≤ 1, 0 ≤ y ≤ 1} ∪ {(0, 0)},

K2 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} \ {(0, 1)}.
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An important particular case of Theorem 3.1 states that convex bodies
K1 and K2 in Rn are translates of each other if and only if the orthogonal
projections of these bodies on every hyperplane of Rn are translates of each
other. This case was considered by Alexandrov [5, § 5], Leichtweiß[66, pp.
241–243], Ryabogin [92], Schneider [95, p. 351], and, probably, some others.

The assertion of Theorem 3.1 can be refined by considering certain fam-
ilies of projection hyperplanes. Let F ⊂ Rn be a set of unit vectors, sym-
metric about the origin of Rn, and let H(F ) denote the family of (n − 1)-
dimensional subspaces in Rn whose unit normals belong to F . Then F is
called a homothety-set, provided any two convex bodies in Rn are directly
homothetic if and only if their orthogonal projections on every subspace from
H(F ) are directly homothetic. Székely [118] showed that F is a homothety-set
if and only if it contains three non-collinear vectors and the closure of F meets
every big (n − 2)-dimensional sphere of the unit sphere in Rn. For the case
of translates of compact convex sets in Rn this fact was lately obtained by
Golubyatnikov [40].

Given a pair of nonempty sets X and Y in Rn and an integer m, 2 ≤ m ≤
n − 1, one may consider the following property Pm(X,Y ): the orthogonal
projections of X and Y on every m-dimensional plane in Rn are homothetic.
As shown above, Pm(X,Y ) holds if X and Y are homothetic. Furthermore,
Pk(X,Y ) ⇒ Pm(X,Y ) provided k > m. Indeed, if an m-dimensional plane
M ⊂ Rn is contained in a k-dimensional plane L ⊂ Rn, then the orthogonal
projection f of Rn on M can be expressed as the composition f = g ◦h, where
h is the orthogonal projection of Rn on L, and g is the orthogonal projection
of L on M .

In view of this argument, Theorem 3.1 can be sharpened by considering
orthogonal projections on planes of dimension smaller than n − 1. Groemer
[47] proved that convex bodies K1 and K2 in Rn, one of them being centrally
symmetric, are directly homothetic if and only if there is an integer m, 2 ≤
m ≤ n − 1, such that the orthogonal projections of K1 and K2 on every
m-dimensional plane in Rn are directly homothetic. Hadwiger [58] observed
that Groemer’s result holds without any symmetry requirements and gave a
backward induction proof. Finally, Rogers [89] provided a simple proof of this
assertion for the case m = 2 and observed that it holds for any integer m,
2 ≤ m ≤ n− 1.

Theorem 3.3. ([58, 89]) Convex bodies K1 and K2 in Rn, n ≥ 3, are
directly homothetic if and only if there is an integer m, 2 ≤ m ≤ n− 1, such
that the orthogonal projections of these bodies on every m-dimensional plane
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of Rn are directly homothetic, where the homothety ratio may depend on
the projection plane.

In view of the above results, we pose the following problem.

Problem 3.4. Let K1, . . . ,Kt be convex bodies in Rn, n ≥ 3, and m,
2 ≤ m ≤ n− 1, be an integer. Suppose that a convex body K ⊂ Rn satisfies
the following condition: for any m-dimensional plane L ⊂ Rn, the orthogonal
projection f(K) of K on L is a translate (directly homothetic copy) of one of
the respective orthogonal projections f(K1), . . . , f(Kt). Is it true that K is a
translate (directly homothetic copy) of one of the sets K1, . . . ,Kt?

Theorem 3.3 can be further sharpened, as shown below, by choosing a
reduced family of m-dimensional planes (see Hadwiger [58] for m = n− 1 ≥ 3
and Sallee [93] for m = 2 and r = 1).

Theorem 3.5. ([105]) Convex bodies K1 and K2 in Rn, n ≥ 3, are
directly homothetic if and only if there are integers r and m, with 1 ≤ r ≤
m− 1 ≤ n− 2, and an r-dimensional plane L ⊂ Rn such that the orthogonal
projections of K1 and K2 on every m-dimensional plane containing L are
directly homothetic, where the homothety ratio may depend on the projection
plane.

The following example shows that the plane L in Theorem 3.5 cannot be
chosen in advance (see Groemer [53] for similar examples).

Example 3.6. Let K1 and K2 be triangular prisms in R3, given by

K1 = {(x, y, z) : x ≥ 0, y ≥ 0, x+ y ≤ 1, 0 ≤ z ≤ 1},

K2 = {(x, y, z) : x ≤ 0, y ≤ 0, x+ y ≥ −1, 0 ≤ z ≤ 1},

and let L be the z-axis of R3. For any 2-dimensional subspace H ⊂ R3

containing L, the orthogonal projection of K1 on H is a translate of the
respective orthogonal projection of K2, while K1 and K2 are not directly
homothetic.

There are several stability results concerning orthogonal projections of
translates of convex bodies K1 and K2 on hyperplanes, formulated in terms
of the translative Hausdorff distance

δ̃(K1,K2) = inf{δ(K1, x+K2) : x ∈ Rn},
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where δ(K1,K2) denotes the standard Hausdorff distance on the family of
compact sets in Rn. Correcting an assertion of Golubyatnikov [38], Groemer
[52] proved that if the orthogonal projections K ′

1 and K ′
2 of convex bodies

K1 and K2 in Rn on every (n− 1)-dimensional subspace satisfy the condition
δ̃(K ′

1,K
′
2) ≤ ε, then δ̃(K1,K2) ≤ (1 + 2

√
2)ε; furthermore, δ̃(K1,K2) ≤ ε

provided both K1 and K2 are centrally symmetric.

Considering a special distance function on the family of compact sets in
Rn, which is invariant under direct homotheties, Groemer [52] established sim-
ilar estimates concerning orthogonal projections of directly homothetic copies
of K1 and K2.

The remaining part of this section is devoted to various extensions of the
above results that involve arbitrary homotheties and, possibly, unbounded
solids. We start with the following result from [105].

Theorem 3.7. ([105]) For compact (respectively, closed) convex sets K1

and K2 in Rn, n ≥ 3, and an integer m, 2 ≤ m ≤ n − 1 (respectively,
3 ≤ m ≤ n− 1), the following conditions are equivalent.

(a) K1 and K2 are homothetic.

(b) The orthogonal projections of K1 and K2 on every m-dimensional plane
L ⊂ Rn are homothetic, where the homothety ratio and its sign may
depend on the projection plane.

We observe that Theorem 3.7 cannot be routinely reduced to Theorem 3.3
by using compactness or continuity arguments. The main obstacle along this
way represents the case when the orthogonal projections f(K1) and f(K2) on
L are centrally symmetric. Namely, if these centrally symmetric projections
are related as f(K1) = u+ λ f(K2), then u and λ (but not the absolute value
of λ) are not uniquely determined. For instance, the homothetic squares K1

and K2 in Figure 2 have two distinct centers of homothety.

K1 K2

Figure 2: Squares with two centers of homothety.
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The following example shows that the inequality m ≥ 3 in Theorem 3.7 is
sharp for the case of unbounded convex solids.

Example 3.8. Let K1 and K2 be solid paraboloids in R3, given, respec-
tively, by

K1 =
{
(x, y, z) : x2 + y2 ≤ z

}
and K2 =

{
(x, y, z) : 2x2 + y2 ≤ z

}
.

Obviously, K1 and K2 are not homothetic. On the other hand, their parallel
projections f(K1) and f(K2) on every plane L ⊂ R3 are directly homothetic.
Indeed, this is obvious if dimL = 1. If dimL = 2, then either f(K1) =
f(K2) = L, or f(K1) and f(K2) are convex solids in L bounded by parabolas
with parallel axes of symmetry, and thus are directly homothetic.

Based on Example 3.8, one might pose the following problem.

Problem 3.9. What is the relation between convex solids K1 and K2 in
Rn, n ≥ 3, such that their orthogonal projections on every 2-dimensional
plane of Rn are homothetic?

The next two results describe some particular extensions of Theorem 3.7
to the case of 2-dimensional projections.

Theorem 3.10. ([101]) Given a convex solid K1 ⊂ Rn, n ≥ 3, there is
a line l ⊂ Rn (depending on K1) with the following property: a convex solid
K2 ⊂ Rn is a translate of K1 if and only if the orthogonal projection of K2

on every 2-dimensional plane L containing l is a translate of the respective
orthogonal projection of K1 on L.

Theorem 3.11. ([113]) Polyhedra P1 and P2 in Rn, n ≥ 3, are homoth-
etic if and only if their orthogonal projections on every 2-dimensional plane
of Rn are homothetic.

The assertion of Theorem 3.11 also holds for the case of closed convex
sets which are sums of polytopes and closed convex cones, while there are
examples of non-homothetic M-decomposable sets (that is, sums of com-
pact convex sets and closed convex sets, as defined in [37, 110, 111]) whose
orthogonal projections on every 2-dimensional plane of Rn are directly
homothetic (see [113]).
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4. Generated cones

Geometrically, a parallel projection of a nonempty set X ⊂ Rn on a hy-
perplane H ⊂ Rn can be viewed as the intersection of H with the both-way
infinite cylinder X + l, where l is a suitable 1-dimensional subspace. Clearly,
the parallel projections of nonempty sets X1 and X2 on H are homothetic if
and only if the cylinders X1 + l and X2 + l are homothetic. This argument
suggests an interpretation of central projections in terms of generated cones.
Namely, the projection with center p ∈ Rn of a nonempty set X ⊂ Rn on a
hyperplane H ⊂ Rn may be viewed as the intersection of the generated cone
Cp(X) and H (see Figure 3).

Cp1(X1)
Cp2

(X2)

H

Figure 3: Generated cones of homothetic sets.

Suppose that nonempty sets X1 and X2 are directly homothetic: X1 =
v + λX2 for suitable v ∈ Rn and λ > 0. For any point p1 ∈ Rn \ X1, let
p2 = λ−1(p1 − v). Then

p1 = v + λp2, p2 ∈ Rn \ λ−1(X1 − v) = Rn \X2

and, by (3),

Cp1(X1) = Cv+λp2(v + λX2) = v + (λ− 1)p2 + Cp2(X2)

= p1 − p2 + Cp2(X2).

Based on this argument, we can formulate the assertion below.

Theorem 4.1. ([113]) Let K1 and K2 be proper closed convex sets in
Rn, n ≥ 3, with dim(linK1) ≤ n− 3. The following conditions are equivalent.

(a) K1 and K2 are directly homothetic.

(b) For any point p1 ∈ Rn \ K1 there is a point p2 ∈ Rn \ K2 such that
Cp1(K1) is a translate of Cp2(K2).
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Remark 4.2. It is known that for a closed convex set K ⊂ Rn and a point
p ∈ Rn \ K, the generated cone Cp(K) has a unique apex. Consequently,
condition (b) in Theorem 4.1 can be equivalently reformulated as follows:

(b’) For any point p1 ∈ Rn \K1 there is a point p2 ∈ Rn \K2 such that

Cp1(K1) = p1 − p2 + Cp2(K2). (5)

We also observe that the point p2 in condition (b′) may be not uniquely de-
termined by p1. For instance, if K1 = K2 = {(x, y) : x, y ≥ 0}, then the
equality (5) holds for any choice of points p1 and p2 in the open domain
{(x, y) : x, y < 0}.

The restriction dim(linK1) ≤ n− 3 in Theorem 4.1 is essential. Indeed, if
the convex sets K1 and K2 in R3 are given by

K1 =
{
(x, y, z) : x2 + y2 ≤ 1

}
and K2 = {(x, y, z) : 0 ≤ x, y ≤ 1}.

Then linK1 = linK2, which is the z-axis. It is easy to see that for any point
p1 ∈ R3 \K1 there is a point p2 ∈ R3 \K2 such that Cp(K1) is a translate of
Cp(K2), while K1 and K2 are not directly homothetic.

Remark 4.3. Theorem 4.1 allows a reduction to Theorem 3.1 in the case
when both sets K1 and K2 are compact. We provide here a sketch of the
argument. Given a hyperplane H ⊂ Rn, translate it such that both K1 and
K2 are contained in the same open halfspace W determined by H. Denote
by l the 1-dimensional subspace of Rn orthogonal to H, and let h = l ∩ V ,
where V = Rn \W . For any point p1 ∈ h, the respective point p2 satisfying
condition (b′) belongs to V . If p1 tends to infinity along h, then the section
Cp1(K1) ∩ H tends to the orthogonal projection of K1 on H. Similarly, the
respective section Cp2(K2) ∩ H tends to the orthogonal projection of K2 on
H. Since, by the assumption, the cones Cp1(K1) and Cp2(K2) are translates
of each other, their sections Cp1(K1) ∩ H and Cp2(K2) ∩ H are directly ho-
mothetic. Consequently, the orthogonal projections of K1 and K2 on H, as
limits of these sections, are directly homothetic. Because the hyperplane H is
chosen arbitrarily, the sets K1 and K2 are directly homothetic, according to
Theorem 3.1.

5. Homothetic sections

Plane sections of convex bodies are often considered as dual operations to
their orthogonal projections. It is easy to see that suitable plane sections of
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homothetic sets X1 and X2 in Rn are also homothetic. For instance, given a
point p1 ∈ Rn, there is a point p2 ∈ Rn such that for every pair of parallel
planes L1 and L2 through p1 and p2 respectively, the sections X1 ∩ L1 and
X2 ∩ L2 are both empty or are homothetic (see Figure 4). Indeed, let X1 =
v + λX2, with λ ̸= 0. If L1 is a plane through p1, then it can be expressed

L1p1

X1
L2p2

X2

Figure 4: Sections of homothetic sets.

as L1 = p1 + S for a suitable subspace S of Rn. With p2 = λ−1(p1 − v), the
plane L2 = p2 + S is parallel to L1 and, due to λS = S,

X1 ∩ L1 = (v + λX2) ∩ (p1 + S) = (v + λX2) ∩ (v + λp2 + S)

= v + λ(X2 ∩ (p2 + S)) = v + λ(X2 ∩ L2).

The following theorem was proved by Rogers [89] (for the case when the
points p1 and p2 are interior to the convex bodies K1 and K2) and later
extended by Burton [18].

Theorem 5.1. ([18, 89]) Convex bodies K1 and K2 in Rn, n ≥ 3, are
directly homothetic if and only if there are points p1 and p2 in Rn such that
for every pair of parallel 2-dimensional planes L1 and L2 through p1 and p2
respectively, the sections K1 ∩L1 and K2 ∩L2 are both empty or are directly
homothetic.

Rogers [89] observed that Theorem 5.1 (for the case p1 ∈ intK1 and p2 ∈
intK2) remains true if the parallel planes L1 and L2 have some intermediate
dimension m, 2 ≤ m ≤ n− 1. Affirmatively answering Burton’s question (see
[18]), Burton and Mani [19] proved the following deep result.

Theorem 5.2. ([19]) Let K1 and K2 be convex bodies and p1 and p2 be
points in Rn, n ≥ 3. Given an integerm, 2 ≤ m ≤ n−1, suppose that for every
pair of parallelm-dimensional planes L1 and L2 through p1 and p2 respectively,
the sections K1 ∩L1 and K2 ∩L2 are both empty or are homothetic. If there
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is a direct homothety h : Rn → Rn, such that h(K1) = K2 and h(p1) ̸= p2,
then K1 and K2 are solid ellipsoids.

In view of Theorem 3.7, we pose the following problem.

Problem 5.3. Let K1 and K2 be convex solids and p1 and p2 be points
in Rn, n ≥ 3. Given an integer m, 2 ≤ m ≤ n− 1, suppose that for every pair
of parallel m-dimensional planes L1 and L2 through p1 and p2 respectively,
the sections K1 ∩ L1 and K2 ∩ L2 are both empty or are homothetic, where
the homothety ratio and its sign may depend on the choice of planes. Are K1

and K2 homothetic?

For the case of unbounded convex solids, Problem 5.3 is partly confirmed
by the following results.

Theorem 5.4. ([101]) Let K1 and K2 be convex solids in Rn, n ≥ 3,
and p1 ∈ K1 and p2 ∈ K2 be points such that for every pair of parallel 2-
dimensional planes L1 and L2 through p1 and p2, respectively, the section
K1 ∩L1 is a translate of K2 ∩L2. Then K1 is a translate of K2. Moreover, if
both K1 and K2 are unbounded and line-free, then K1 = u+K2 implies that
p1 = u+ p2.

As follows from Theorem 5.2, a convex body K ⊂ Rn is a solid ellipsoid
provided there are distinct points p1 and p2 in Rn, n ≥ 3, and an integer m,
2 ≤ m < n, such that for every pair of parallel m-dimensional planes L1 and
L2 through p1 and p2, respectively, the sections K ∩ L1 and K ∩ L2 are both
empty or are homothetic (see [19]). The theorem below partly generalizes this
assertion to the case of convex solids.

Theorem 5.5. ([104]) Let K ⊂ Rn, n ≥ 4, be a line-free convex solid
and p1 and p2 be distinct points in intK such that every pair of parallel m-
dimensional planes L1 and L2 through p1 and p2 respectively, the sections
K ∩ L1 and K ∩ L2 are directly homothetic. Then K is either a solid convex
quadric or a convex cone whose apex belongs to the line through p1 and p2.

Jerónomo-Castro, Montejano, and Morales-Amaya [62] (see also Monte-
jano [79]) proved the following variations of Rogers’ result: If K1 and K2

are strictly convex bodies in R3 such that for every 2-dimensional subspace
S ⊂ R3 one can choose continuously planar sections of K1 and K2, parallel
to S, which are translated copies (respectively, directly homothetic copies)
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one of each other, then K1 is a translate of K2 (respectively, K1 and K2 are
directly homothetic).

One more result of similar spirit is due to Olovjanishnikov [84] (see also
[108] for the description of related results from this hardly accessible article).

Theorem 5.6. ([84]) Let K, K1, and K2 be convex bodies in Rn such
that K1 ⊂ intK2, and let p be a point in intK. Suppose that for every
hyperplaneH through p and for distinct hyperplanesH ′ andH ′′, both parallel
to H and supportingK1, the setsH

′∩K2 andH ′′∩K2 are translates of H∩K.
If the images of p under these translates always belong to bdK1, then all three
bodies K, K1, and K2 are homothetic solid ellipsoids such that K1 and K2

have a common center.

6. Further results on projections and sections

In view of the previous section, it is natural to look for similar assertions
that deal with various types of geometric transformations.

A series of results was initiated by Alexandrov [5], who proved that cen-
trally symmetric convex bodies K1 and K2 in Rn are translates of each other
if and only if there is an integer m, 2 ≤ m ≤ n − 1, such that for every
m-dimensional plane L ⊂ Rn, the orthogonal projections of K1 and K2 on L
have the same m-dimensional volume. This property, however, does not hold
for non-symmetric convex bodies.

A dual form of Alexandrov’s theorem states that centrally symmetric con-
vex bodies K1 and K2 in Rn, with centers at p1 and p2, respectively, are
translates of each other if and only there is an integer m, 2 ≤ m ≤ n−1, such
that for every pair of parallel m-dimensional planes L1 and L2 through p1 and
p2, respectively, the sectionsK1∩L1 andK2∩L2 have the samem-dimensional
volume (see Gardner [35], Theorem 7.2.6, and p. 291 for historical references).
Central symmetry of the bodies is essential here, since there are non-congruent
polytopes P1 and P2 in Rn containing the origin o in their interiors and an in-
teger m, 2 ≤ m ≤ n− 2, such that for every m-dimensional subspace S ⊂ Rn,
the sections P1 ∩ S and P2 ∩ S have the same m-dimensional volume ([35,
Theorem 7.2.13]). These deep results originated a variety of publications on
related problems (see, e.g., the surveys of Goodey [45] and Goodey, Schneider,
Weil [44]).

Another line of research was originated by Nakajima [82, p. 169] for n = 3
and by Petty and McKinney [86] for n ≥ 3, who studied the following prob-
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lem: What is the relation between convex bodies K1 and K2 in Rn provided
their orthogonal projections on every low-dimensional plane satisfy certain
congruence or similarity conditions? Golubyatnikov obtained various results
which provide sufficient conditions for K1 to be either a translate of K2 or of
−K2, or to be a directly homothetic copy of K2 (see, for instance, [39], [41],
and [42]). In the spirit of Groemer’s stability result on directly homothetic
projections (see Section 3), Golubyatnikov [42, Theorem 2.2.1] established a
stability result regarding orthogonal congruent projections on 2-dimensional
planes of special types of convex bodies in Rn.

On the other hand, based on a construction of Petty and McKinney [86],
Gardner and Volčič [36] gave an example of a pair of centered, coaxial convex
bodies of revolution in Rn, n ≥ 3, whose projections on each two-dimensional
plane are similar, but which are not themselves even affinely equivalent.

This example prompted Gardner and Volčič [36] to pose the following
question, which concerns a more restricted group to geometric transforma-
tions: Suppose that 2 ≤ m ≤ n − 1 and K1 and K2 are convex bodies in Rn

such that their orthogonal projections on every m-dimensional subspaces are
congruent. Is K1 a translate of K2 or −K2?

Under various additional assumptions, affirmative answers to this question
were obtained by Alfonseca, Cordier, Ryabogin [7, 8], Mackey [69], Myrosh-
nychenko and Ryabogin (see [81], [91]). However, Zhang [123] constructed
convex bodies K1 and K2 in Rn, n ≥ 3, such that their orthogonal projections
on every (n − 1)-dimensional subspace are congruent, but nevertheless, K1

and K2 do not coincide up to a translation or a reflection in the origin.

A dual to the Gardner and Volčič construction reveals the existence of
centrally symmetric convex bodies K1 and K2 in Rn, with centers at p1 and
p2, respectively, which are not affinely equivalent to each other, but have the
following property: for every pair of parallel 2-dimensional planes L1 and L2

through p1 and p2, respectively, the sections K1 ∩L1 and K2 ∩L2 are similar
(see [35, Theorem 7.1.11]).

In view of this example, Gardner [35, p. 289] posed one more question:
Suppose that 2 ≤ m ≤ n − 1 and K1 and K2 are star-shaped with respect
to o bodies in Rn such that the sections K1 ∩ S and K2 ∩ S are congruent
for every choice of the m-dimensional subspace S of Rn. Is K1 a translate
of K2 or −K2?
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7. Algebra of homothety classes

Given a convex solid K ⊂ Rn, the family KH of all directly homothetic
copies of K is called the homothety class generated by K. Obviously, the
family KH is closed with respect to vector addition: if L = u + λK and
M = v + µK, where λ, µ > 0, then

L+M = (u+ v) + (λ+ µ)K ∈ KH .

Generally, the family KH is not closed with respect to n-dimensional intersec-
tions (see below the description of homothety classes with this property).

For convex solids K and L in Rn, consider the family

KH + LH = {K ′ + L′ : K ′ ∈ KH , L
′ ∈ LH}.

Theorem 7.1. ([102]) For a pair of line-free convex solids K and L in
Rn, the following conditions are equivalent.

(a) KH+LH is contained in a unique homothety class generated by a line-free
closed convex solid.

(b) KH +LH is contained in the union of countably many homothety classes
generated by line-free closed convex solids.

(c) There is a line-free closed convex solid M ⊂ Rn such that:

(i) recM = recK + recL,

(ii) each of the sets K0 = K + recM and L0 = L + recM is directly
homothetic either to M or to recM ,

(iii) if M is not a cone, then at least one of the sets K0 and L0 is
not a cone.

Remark 7.2. The convex solid M from Theorem 7.1 satisfies the inclusion
KH + LH ⊂ MH . Furthermore, if K and L are convex bodies in Rn, then
recK = recL = {o}. Consequently, each of the conditions (a)–(c) from
Theorem 7.1 holds if and only if all three bodies K, L, and M are directly
homothetic.

Following Hadwiger [57], the Minkowski difference X ∼ Y of nonempty
sets X and Y in Rn is defined by

X ∼ Y = {x ∈ Rn : x+ Y ⊂ X}.
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If both X and Y are closed convex sets, then the obvious equality

X ∼ Y = ∩{X − y : y ∈ Y }

implies that X ∼ Y is also closed and convex (possibly, empty). Given convex
solids K and L in Rn, consider the family

KH ∼ LH =
{
K ′ ∼ L′ : K ′ ∈ KH , L′ ∈ LH , dim(K ′ ∼ L′) = n

}
.

An important notion here is that of tangential set introduced by Schneider
[95, p. 136]: a convex solid D ⊂ Rn is a tangential set of a convex body K
provided K ⊂ D and through each boundary point of D there is a support
hyperplane to D that also supports K.

Theorem 7.3. ([102]) For a pair of convex bodies K and L in Rn, the
following conditions (a)-(d) are equivalent.

(a) KH ∼ LH ⊂ KH ,

(b) KH ∼ LH is contained in a unique homothety class of a convex body,

(c) KH ∼ LH is contained in the union of countably many homothety classes
of convex bodies,

(d) K is directly homothetic to a tangential set of L.

The proof of Theorem 7.3 is based on the following assertion (see [95,
Lemma 3.1.14] for a particular case).

Theorem 7.4. ([102]) Given convex bodes K and L in Rn, the following
conditions are equivalent.

(a) There is a scalar τ > 0 such that K is a tangential set of τL.

(b) There is a scalar τ > 0 such that

K ∼ γL = (1− γ/τ)K, ∀ γ ∈ (0, τ).

(c) There is a scalar γ > 0 such that K ∼ γL = λK, where 0 < λ < 1.

Remark 7.5. Theorem 7.3 cannot be directly generalized to the case of
unbounded convex solids. Indeed, if the convex solid K and a convex body L
in R2 are given by

K = {(x, y) : x ≥ 0, xy ≥ 1}, L = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1},

then K ∼ γL = K for all γ > 0, while K is not directly homothetic to a
tangential set of L.
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8. Intersections of homothetic copies

We recall that an m-dimensional simplex in Rn is the convex hull of m+1
affinely independent points. It is easy to prove (see, e.g., [99]) that a nonempty
intersection of two directly homothetic copies of a solid simplex ∆ ⊂ Rn is a
directly homothetic copy of ∆, possibly degenerated into a point:

(x+ λ∆) ∩ (y + µ∆) = z + ν∆, x, y, z ∈ Rn, λ, µ > 0, ν ≥ 0.

Rogers and Shephard [90] proved the following result.

Theorem 8.1. ([90]) A convex body K ⊂ Rn is a solid simplex is and
only if every nonempty intersection of K and a translate of K is a directly
homothetic copy of K, possibly degenerated into a point:

K ∩ (x+K) = z + λK, x, z ∈ Rn, λ ≥ 0. (6)

Theorem 8.2. ([98]) For convex bodies K1 and K2 in Rn, the following
conditions are equivalent.

(a) K1 and K2 are directly homothetic solid simplices.

(b) The solid intersections (x+λK1)∩(z+µK2), x, z ∈ Rn, λ, µ > 0, belong
to a unique homothety class of convex bodies.

(c) The solid intersections K1 ∩ (x + K2), x ∈ Rn, belong to a unique
homothety class of convex bodies.

(d) The solid intersections K1∩(x+K2), x ∈ Rn, belong to countably many
homothety classes of convex bodies.

A extension of Theorem 8.1 to the case of line-free unbounded convex
solids is due to Bair and Fourneau [9, p. 115].

Theorem 8.3. ([9]) A line-free unbounded convex solid K ⊂ Rn satisfies
condition (6) is and only if it is a solid simplicial cone.

Rockafellar [88, p. 154] introduced the notion of generalized simplex Γ ⊂
Rn, as a direct sum of an m-dimensional simplex and an (n−m)-dimensional
simplicial cone, 0 ≤ m ≤ n:

Γ = conv{u0, u1, . . . , um}+
n∑

i=m+1

[u0, ui⟩, 0 ≤ m ≤ n,

where the set {u0, u1, . . . , un} ⊂ Rn is affinely independent and [u0, ui⟩ denotes
the halfline through ui originated at u0.
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u0

u1

u2 u0

u1

u2 u0

u1

u2

Figure 5: Generalized simplices in the plane.

Clearly, usual solid simplices and solid simplicial cones are particular cases
of generalized simplices. Hinrichsen and Krause [60, 61] showed that any line-
free convex polyhedron in Rn can be partitioned into finitely many generalized
simplices. Fourneau [33] obtained the following characterization of generalized
simplices.

Theorem 8.4. ([33]) A convex solid K ⊂ Rn is a generalized simplex
if and only if all solid intersectionsK∩(x+K), x ∈ Rn, are directly homothetic
to K.

An extension of Theorem 8.4 to the case of translates and homothetic
copies of two convex solids is given in [98, 106].

Theorem 8.5. ([98, 106]) For line-free convex solids K1 and K2 in Rn,
conditions (a)–(c) below are equivalent.

(a) All solid intersections

(x+ λK1) ∩ (z + µK2), x, z ∈ Rn, λ, µ > 0,

belong to a unique homothety class of convex solids.

(b) All solid intersections K1 ∩ (x+K2), x ∈ Rn, belong to a unique homo-
thety class of convex solids.

(c) Both K1 and K2 are generalized simplices, and there is a generalized
simplex K ⊂ Rn such that all solid intersections K1 ∩ (x+K2), x ∈ Rn,
are homothetic to K. Furthermore, K1, K2, and K satisfy either of the
following three conditions.

(1.) Both K1 and K2 are directly homothetic to K.

(2.) One of K1,K2, say K1, is directly homothetic to K, and K2 is a
translate of a generated cone Cu(K), where u is a vertex of K.

(3.) K1 and K2 are translates of generated cones Cu(K) and Cv(K),
respectively, where u and v are distinct vertices of K.
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Figure 6 gives the description of all convex solids K1 and K2 in the plane
that satisfy Theorem 8.5 (the shaded regions are directly homothetic to K).

K1

x+K2

K1

x+K2

K1

x+K2

K1

x+K2

Figure 6: Illustration to Theorem 8.5.

Based on Theorem 8.2, the following problem was posed in [106]

Problem 8.6. Describe all pairs of line-free convex solids K1 and K2 in
Rn such that all solid intersections K1∩(x+K2), x ∈ Rn, belong to countably
many homothety classes of convex solids.

We observe that the solids K1 and K2 in Problem 8.6 may be outside the
family of generalized simplices even if K1 = K2. Indeed, for the polyhedral
convex cone

K = {(x, y, z) ∈ R3 : z ≥ 0, |x|+ |y| ≤ z},
which is not a generalized simplex, the solid intersections K∩(x+K), x ∈ R3,
belong to precisely three homothety classes, generated by the convex solids
K, K ∩ ((1, 1, 0) +K), and K ∩ ((1,−1, 0) +K), respectively. In this regard,
the following theorem is proved in [112].

Theorem 8.7. ([112]) Let K ⊂ Rn be a line-free convex solid such that
all solid intersections K∩ (x+K), x ∈ Rn, belong to finitely many homothety
classes of convex solids. Then K can be expressed as the sum of a simplex
and a polyhedral cone.

The description of convex solids satisfying the conditions of Theorem 8.7
are given in Figures 7 and 8 for the cases n = 2 and n = 3, respectively.
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Figure 7: Two-dimensional solids from Theorem 8.7.

Figure 8: Three-dimensional solids from Theorem 8.7.

Further results and references on intersections of homothetic copies of con-
vex bodies can be found in the survey [99].

Replacing the above condition (6) with a planarity condition on the bound-
aries of homothetic convex solids leads to a characterization of convex solids
with quadratic boundaries. For instance, Gruber [54] proved the following
interesting characterizations of solid ellipsoids.

Theorem 8.8. ([54]) A convex body K ⊂ Rn, n ≥ 3, is a solid ellipsoid
provided there is a neighborhood U of the origin o such that for every nonzero
point u ∈ U , with intK ∩ int(u + K) ̸= ∅, there is a hyperplane H ⊂ Rn

satisfying the inclusion bdK ∩ bd(u+K) ⊂ H.

Further development of this topic is due to Goodey [43], who established
the following characteristic property of a pair of homothetic ellipsoids.

Theorem 8.9. ([43]) Convex bodies K1 and K2 in Rn, n ≥ 3, are homo-
thetic solid ellipsoids if and only if bdK1∩bdK ′

2 is contained in a hyperplane
for every translate K ′

2 of K2 such that K1 ̸= K ′
2.

The theorem below extends Gruber’s result to the case of convex solids. We
recall that a line-free convex quadric in Rn is a convex hypersurface described
in suitable Cartesian coordinates ξ1, . . . , ξn by one of the following conditions
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(see [108]):

a1ξ
2
1 + · · ·+ anξ

2
n = 1, (ellipsoid)

a1ξ
2
1 − a2ξ

2
2 − · · · − anξ

2
n = 1, ξ1 ≥ 0, (sheet of elliptic hyperboloid

of two sheets)

a1ξ
2
1 − a2ξ

2
2 − · · · − anξ

2
n = 0, ξ1 ≥ 0, (nappe of elliptic cone)

a1ξ
2
1 + · · ·+ an−1ξ

2
n−1 = ξn, (elliptic paraboloid)

where all scalars ai involved are positive.

Theorem 8.10. ([107]) Given a line-free convex solid K ⊂ Rn, n ≥ 3,
and a scalar λ ̸= 0, the following conditions are equivalent.

(a) For every homothetic copy K ′ = u+λK of K, the set bdK ∩bdK ′ lies
in a hyperplane.

(b) bdK is a convex quadric.

In view of Theorem 8.9, one can pose the following problem.

Problem 8.11. Let K1 and K2 be line-free convex solids in Rn, n ≥ 3,
such that bdK1 ∩ bdK ′

2 is contained in a hyperplane for every translate K ′
2

of K2 satisfying the condition K1 ̸= K ′
2. Is it true that the solids K1 and K2

are homothetic and their boundaries are convex quadrics?

9. Locally homothetic sets

Given a pair of convex solids K1 and K2 and a nonzero vector e in Rn,
assume the existence of closed halfspaces V1 and V2 with outward normal e
supporting K1 and K2, respectively. The sets

F1(e) = K1 ∩ bdV1 and F2(e) = K2 ∩ bdV2

are called associate exposed faces of K1 and K2, respectively. We will say
that K1 and K2 are locally homothetic provided the sets F1(e) and F2(e) are
directly homothetic for every choice of e.

Clearly, directly homothetic convex solids K1 and K2 are locally homoth-
etic. On the other hand, the converse assertion does not hold. Indeed, the
non-homothetic rectangles

K1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2},

K2 = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}
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are locally homothetic. Nevertheless, considering suitable neighborhoods of
exposed points and edges, one can obtain the following assertion.

Theorem 9.1. ([100, 103]) If K1 and K2 are line-free convex solids in
Rn, then K2 is a translate of K1 if and only if the following conditions are
satisfied.

(a) Every exposed point a1 of K1 has an associate exposed point a2 of K2

such that K2 ∩ (a2 + U) is a translate of K1 ∩ (a1 + U) for a suitable
neighborhood U of o.

(b) Every exposed line segment [a1, b1] of K1 has an associate exposed line
segment [a2, b2] of K2 which is a translate of [a1, b1] and such that for a
suitable neighborhood U of o the sets K2 ∩ (a2 + U) and K2 ∩ (b2 + U)
are translates of K1 ∩ (a1 + U) and K1 ∩ (b1 + U), respectively.

(c) Every exposed halfline l1 of K1 with endpoint a1 has an associate ex-
posed halfline l2 of K2 with endpoint a2 such that l2 is a translate of
l1 and K2 ∩ (a2 + U) is a translate of K1 ∩ (a1 + U) for a suitable
neighborhood U of o.

Analysis of the proof of Theorem 9.1 implies the following corollary.

Corollary 9.2. Strictly convex bodies K1 and K2 in Rn are directly
homothetic if and only if every exposed point a1 ofK1 has an associate exposed
point a2 of K2 such that K2 ∩ (a2 +U) is a homothetic copy of K1 ∩ (a1 +U)
for a suitable neighborhood U of o.

Kharazishvili [63] proved that a convex body K ⊂ Rn is a parallelotope if
and only if there is a real number λ ∈ (0, 1) such that all nonempty intersec-
tions K ∩ (x + λK), x ∈ Rn, are centrally symmetric. Theorem 9.1 gives a
tool to prove the following generalization of this assertion (see also [103]).

Theorem 9.3. ([100]) For a pair of convex bodies K1 and K2 in Rn, the
following three conditions are equivalent.

(a) All nonempty intersections K1 ∩ (x + K2), x ∈ Rn, are centrally sym-
metric.

(b) K1 and K2 are direct sums of the form K1 = P1⊕Q1 and K2 = P2⊕Q2

such that: (i) P1 is a compact convex set of some dimension m, 0 ≤
m ≤ n, and P2 = z − P1 for a suitable vector z ∈ Rn, (ii) Q1 and Q2

are isothetic parallelepipeds, both of dimension n−m.
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Theorem 9.1 almost immediately implies that solid polytopes P1 and P2 in
Rn are translates of each other provided for any facet F1(e) of P1 the associate
face F2(e) of P2 is a translate of F1(e). Using induction on k and standard
geometric arguments, this fact can be easily generalized as follows.

Theorem 9.4. For solid polyhedra P1 and P2 in Rn, the following asser-
tions hold.

(a) P1 and P2 are translates of each other if and only if there is an integer
k, 1 ≤ k ≤ n − 1, such that for every k-dimensional face F1(e), e ̸= o,
the associate face F2(e) of P2 is a translate of F1(e).

(b) P1 and P2 are directly homothetic if and only if there is an integer k,
2 ≤ k ≤ n− 1, such that for every k-dimensional face F1(e), e ̸= o, the
associate face F2(e) of P2 is directly homothetic to F1(e).

In 1897, Minkowski [77] proved the following result (the original case n = 3
is routinely extendable to all n ≥ 3).

Theorem 9.5. ([77]) If P1 and P2 are solid polytopes in Rn such that
for any facet F1(e) of P1 the associate face F2(e) of P2 has the same (n− 1)-
dimensional volume as F1(e), then P1 and P2 are translates of each other.

The next two theorems are due to Alexandov (see [6, Chapter 6]).

Theorem 9.6. ([6]) Let P1 and P2 be solid polytopes in Rn satisfying
the following conditions:

(a) for every bounded facet F1(e) of P1, the associate face F2(e) of P2 has
the same (n− 1)-dimensional volume as F1(e), and vice versa,

(b) every unbounded facet F1(e) of P1 is a translate of the associate un-
bounded facet F2(e) of P2, and vice versa.

Then P1 and P2 are translates of each other.

Theorem 9.7. ([4]) Let P1 and P2 be solid polyhedra in R3 satisfying
the following conditions:

(a) no bounded facet F1(e) of P1 can be translated inside the associate
bounded facet F2(e) of P2, and vice versa,

(b) every unbounded facet F1(e) of P1 is a translate of the associate un-
bounded facet F2(e) of P2, and vice versa.

Then P1 and P2 are translates of each other.
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Interestingly, Theorem 9.7 cannot be generalized to the case n > 3. For
instance, in R4, facets of a cube with edge length 2 cannot be translated inside
the associated facets of a parallelotope with edges of length 1, 1, 3, and, 3,
while these polytopes are not translates of each other.

10. Homothetic tilings and partitions

In a standard way, a tiling of the space Rn is any collections of convex
bodies which cover Rn without gaps and overlaps. A tiling of Rn is called
locally finite if every closed ball in Rn meets at most finitely many members
of the tiling. It is easy to see that any locally finite tiling has at most countably
members and each of them is a solid polytope.

Figure 9: Parallelogons in R2.

Parallelohedra. There are various types of tilings determined by a
given solid polytope Q ⊂ Rn. Probably, the most simple (and thus most
known) are tilings by translates of Q. Traditionally, polytopes which allow
such tilings are called parallelohedra (parallelogons in the plane). Their study
was originated by Fedorov [32, Section IV], who described parallelohedra in
dimensions two and three. In the plane, there are two types of such parallelo-
gons: parallelograms and centrally symmetric hexagons (see Figure 9). In the
3-space, there are five types of such parallelohedra: parallelepipeds, hexago-
nal prisms, rhombic dodecahedrons, elongated dodecahedrons, and truncated
octahedrons (see Figure 10). Fedorov’s arguments were criticized for some
omissions, and new simplified and complete methods were given later (see, for
instance, Voronŏı [120, 121], Delaunay [24, 26], Moser [80], and Coxeter [23]).

Description and classification of parallelohedra in higher dimensions is usu-
ally realized in terms of combinatorial equivalence of polytopes. (In a stan-
dard way, two solid polytopes in Rn are called combinatorially equivalent
provided their face latices allow a bijection which preserves face incidence
and dimension.) Voronŏı [120, § 114] described all 52 combinatorial types of
parallelohedra in R4. Delaunay [24], using parallel projections along edges
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of parallelohedra, described 51 (out of 52) combinatorially distinct parallelo-
hedra in R4, and the missing type was discovered later by Shtogrin [114].
Similar combinatorial classifications were obtained by Engel [30], Deza and
Grishukhin [27]. There are 103769 combinatorial types of parallelohedra in
R5, according to Engel [31].

Figure 10: Parallelohedra in R3.

While describing parallelohedra, Fedorov assumed without proof that ev-
ery parallelohedron Q ⊂ R3 has a center. This fact was established by
Minkowski [77] in a slightly more general setting. Namely, he considered
a solid polytope Q ⊂ R3 satisfying the following condition: there are finitely
many vectors e1, . . . , ek such that translates of the form e+Q, where

e ∈ {t1e1 + · · ·+ tkek : t1, . . . , tk are integers},

tile R3. Under this assumption, Minkowski proved that Q is centrally sym-
metric and then deduced the central symmetry of all faces of Q.

Delaunay [24] and Alexandrov [3] observed that Minkowski’s argument
can be routinely extended to the case of higher dimensions and formulated
the following necessary conditions for a solid polytope Q ⊂ Rn to be a paral-
lelohedron:

(P1) Q is centrally symmetric,

(P2) every facet of Q is centrally symmetric,

(P3) every parallel projection of Q on a 2-dimensional plane along an (n−2)-
dimensional face of Q is either a parallelogram or a centrally symmetric
hexagon.

Based on these observations, Venkov [119, Theorem 5] (later also McMullen
[73] and Dolbilin [28]) proved the following theorem.
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Theorem 10.1. ([119]) Any parallelohedron Q ⊂ Rn satisfies the above
conditions (P1)–(P3). Conversely, if a solid polytope Q ⊂ Rn satisfies the
conditions (P1)–(P3), then Q is a parallelohedron.

As a consequence, Venkov [119] concluded that every parallelohedron in
Rn allows a facet-to-facet tiling of the space. In fact, condition (P1) can be
omitted in Theorem 10.1, because (P2) implies (P1) for the case of any solid
polytope in Rn. This result was proved by Alexandrov [1] for n = 3 and
by Shephard [96] for all n ≥ 3. Furthermore, McMullen [71, 72] (later also
Dolbilin and Kozachok [29]) complemented Shephard’s result by the following
assertion: If Q ⊂ Rn, n ≥ 4, is a solid polytope and m is an integer, with
2 ≤ m ≤ n−2, such that all m-dimensional faces of Q are centrally symmetric,
then Q and all faces of Q are centrally symmetric. This assertion does not
hold if m = n − 1: McMullen [71] gave an example of a solid non-centrally
symmetric polytope Q ⊂ Rn, n ≥ 4, all of whose (n−1)-dimensional faces are
centrally symmetric.

There is a large volume of results and references on combinatorial classi-
fication of various types of parallelohedra and their relation to the study of
Dirichlet-Voronŏı cells. This material is beyond the scope of our paper (and
deserves a separate survey).

Homothetic tiles. Delaunay [25] (for n = 3), Alexandrov [2, 3] (for
n = 3 and n = 4), and later Groemer [49] (for n ≤ 4) proved that, if a
solid polytope Q ⊂ Rn allows a locally finite tiling of the space by directly
homothetic copies of Q, then Q is necessarily a parallelohedron (it is assumed
in [25] and [49] that the sizes of homothetic tiles of Q are bounded from below
and from above). Groemer also proved that if a solid polytope Q ⊂ Rn, n ≤ 4,
allows a locally finite tiling of the space by directly homothetic copies of Q,
not all of them being translates of Q, then Q is a prism based on an (n− 1)-
dimensional parallelohedron. McMullen [73, 74] showed that both assertions
hold for all n ≥ 2.

Expanding the family of direct homotheties to all homotheties in Rn, we
can formulate the following problem.

Problem 10.2. Describe all solid polytopes Q ⊂ Rn which allow locally
finite tilings of Rn by homothetic (direct or inverse) copies of Q.

For instance, a triangle, a convex quadrilateral, a convex pentagon with
a pair of parallel sides, and a convex hexagon with a pair of opposite equal
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parallel sides, as depicted in Figure 11, allow locally finite homothetic tilings
of the plane.

Figure 11: Illustration to Problem 10.2.

A related topic of research concerns tiling of Rn by congruent copies of a
convex body (see, e.g., the survey of Grünbaum and Shephard [56]).

Homothetic partitions. By analogy with homothetic tiling of the
space, Groemer [46, 48, 50] considered the problem to describe those convex
bodies in Rn which allow partitions into pairwise homothetic convex pieces.
His results can be summarize as follows. Given a convex body K ⊂ Rn, the
assertions below hold:

1. K can be partitioned into convex bodies K1, . . . ,Kt, t ≥ 2, which are
translates of each other, if and only if K is a prism with an (n −
1)-dimensional base (and all K1, . . . ,Kr are prisms with an (n − 1)-
dimensional bases).

2. K can be partitioned into convex bodies K1, . . . ,Kt, t ≥ 2, which are
directly homothetic to each other, if and only if K is a prism or a
truncated cone with an (n − 1)-dimensional base (and all K1, . . . ,Kr

are, respectively, prisms or truncated cones).

3. K can be partitioned into convex bodies K1, . . . ,Kt, t ≥ 2, which are
directly homothetic to K, if and only if K is a parallelotope.

Some generalizations of these results, that involve partitions of K into
nonconvex pieces, are obtained by Groemer [51] and Sallee [94].
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[37] M.A. Goberna, E. González, J.E. Mart́ınez-Legaz, M.I. Todo-
rov, Motzkin decomposition of closed convex sets, J. Math. Anal. Appl.
364 (2010), 209 – 221.

[38] V.P. Golubyatnikov, On the determination of the form of a body from its
projections, Dokl. Akad. Nauk SSSR 262 (1982), 521 – 522.

[39] V.P. Golubyatnikov, On the unique determination of visible bodies from
their projections, Sibirsk. Mat. Zh. 29 (1988), 92 – 96.



classes of homothetic convex sets 167

[40] V.P. Golubyatnikov, On the unique reconstructibility of compact convex
sets from their projections, Sibirsk. Mat. Zh. 31 (1990), 196 – 199.

[41] V.P. Golubyatnikov, On the unique reconstructibility of convex and visible
compact sets from their projections. II, Sibirsk. Mat. Zh. 36 (1995), 301 – 307.

[42] V.P. Golubyatnikov, “Uniqueness questions in reconstruction of multi-
dimensional objects from tomography-type projection data”, De Gruyter,
Utrecht, 2000.

[43] P.R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93
(1983), 25 – 34.

[44] P.R. Goodey, R. Schneider, W. Weil, Projection functions of con-
vex bodies, in: “Intuitive geometry” (Proceedings of the 5th Conference
held in Budapest, September 3 - 8, 1995. Edited by Imre Bárány and Károly
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[49] H. Groemer, Über die Zerlegung des Raumes in homothetische konvexe
Körper, Monatsh. Math. 68 (1964), 21 – 32.
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J. 35 (1932), 285 – 286.

[84] S.P. Olovjanishnikov, On a characterization of the ellipsoid, Učen. Zap.
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group”, Proceedings of the Steklov Institute of Mathematics, No. 123 (1973);
American Mathematical Society, Providence, RI, 1975.

[115] A. Stancu, The floating body problem, Bull. London Math. Soc. 38 (2006),
839 – 846.

[116] W. Süss, Zu Minkowskis Theorie von Volumen und Oberfläche, Math. Ann.
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