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1. INTRODUCTION

The concept of symplectic geometry emerged in the early nineteenth cen-
tury in the study of classical mechanical systems, such as planetary orbits.
Many important geometric problems can be naturally formulated in the con-
text of symplectic geometry, thus it is also a widely useful language in mathe-
matical physics, representation theory etc. Over time, it became an important
and independent mathematical subject which is an extension of complex ge-
ometry. A symplectic manifold is a smooth manifold M endowed with a
2-form w on M which is closed and nondegenerate. The precised definition
and properties may be seen in [I4]. A linear symplectic manifold (or a special
symplectic manifold in [6]) is a symplectic manifold E, where E is the total
space of a vector bundle £ — M and w is a linear 2-form on E (see Section .
A symplectic vector bundle over a manifold M is a pair (E,w) consisting of
a real vector bundle ¢ : E — M and a smooth section w of the vector bundle
/\2 E* — M such that (E,,w;) is a symplectic vector space for all z € M.
Each linear symplectic manifold induces a symplectic vector bundle (T'F,w)
over F. Kurek and Mikulski described all natural symplectic structures from
a smooth manifold M to its tangent bundles TM (see [11]) and they studied
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the complete lifts of symplectic structures to tangent bundles of higher order
T"M (see [12]).

Okassa studied the lifts of symplectic structures to bundles of infinitely
near points (see [16]). Lifts of symplectic structures to Frobenius-Weil bun-
dles T4 M were studied by several authors namely [2, 13[4, O] where the authors
deduced almost symplectic forms on T4 M from prolongations of almost sym-
plectic structures on a maniflod M.

In this paper, we study the lifting of symplectic vector bundles, linear sym-
plectic manifolds and the Poisson manifold associated to a linear symplectic
manifold using a Frobenius-Weil functor. We begin by giving an intrinsic de-
scription of the structure of linear k-forms developped in [10]. We then show
that lifts of k-forms, symplectic manifolds and symplectic vector bundles with
respect to tangent functors of high order may be generalized to Frobenius-Weil
functors. Finally, we prove that the complete lift of a symplectic or a semi-
Riemannian connection is also a symplectic or a semi-Riemannian connection.
These results are the continuation of those developped over last 25 years by
many authors, some of whom have been cited above. In particular, symplectic
structures are involved in the Hamilton equation of motion. For this reason
the results of this paper are also interesting from the point of view of theorical
mechanics. This article is divided into two main parts: the preliminaries and
the main results.

2. PRELIMINARIES

WEIL ALGEBRA [8]: A Weil algebra is a finite-dimensional quotient of
the algebra of germs &, = C§°(RP,R) (p € N*). Let us denote by M, C &,
the ideal of germs vanishing at 0; hence (&,, M) is a local algebra. For a
Weil algebra A = &,/1, there exists a non negative integer k such the ideal I
contains the power MI; of the maximal ideal M,. We denote r the width of
A, i.e., the smallest integer such that I D M;H; hence A =R-14 & N where
N = ({ea, aeNF 1<]al < r}) with e, := X% 4+ I is the vector subspace
<{ea, acNF 1<]al < r}> spanned by vectors e, |a] < r; N is in fact the
nilpotent ideal of A and (A, N) is a local algebra. Conversely, Given a real
commutative, associative, unital algebra A such that dimg (A) < 400 and
A =R14 @ N with N a nilpotent ideal of A, if (X1,...,X,) is a basis of
N and r a non negative integer such that N"*! = 0, the surjective algebras

homomorphism &, — A, [f]y = > ZDaf (0) (X1)* -+ (Xp)®” induces an
a€eNP
algebra isomorphism &,/I — A with I its kernel.
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ExXAMPLE 2.1. R = §,/M, and D = & /M; are Weil algebras; more
generally, D7 := &,/ M;H is Weil algebra isomorphic to the algebra Jj (RP, R)
of jets of smooth functions on RP vanishing at 0.

FROBENIUS-WEIL ALGEBRA: A Weil algebra A = R-14 @ N is called a
Frobenius-Weil algebra if there is a mnondegenerate bilinear form
o:Ax A — R such that o (ab,c) = o (a,be), for all a, b, ¢ in A. Equiv-
alently, A is a Frobenius-Weil algebra if there exists a linear map A\g: A - R
such that ker Ag contains no nonzero ideal of A. More precisely, when o is
given, \g(a) = o (a,14) = o (1a,a) and when \g is given, o (a,b) = A\g (ab).
Let J(A) be the set of non trivial ideal of an algebra A. A minimal element of
(3(A), ©) is called a minimal ideal, i.e., a non zero ideal I of A which contains
no other non zero ideal. The socle of a Weil algebra A =R-14 ® N is the set
Soc (A) of a in A such that au = 04, for all uw in N; Soc (A) is an ideal and
hence a vector subspace of A. Each minimal ideal I of A is contained into
Soc(A) [3, Proposition 2], since 14 — u is invertible for all nilpotent element
u. The correct wording of [3, Proposition 3] is: “Minimal ideals of A are
1-dimensional vector subspaces of Soc (A).” Indeed, for a non zero element
x of Soc(A), I = R-z is clearly a minimal ideal. Conversely, given a non
zero element x of a minimal ideal I, the relation {04} # () C I implies
I =(x)=Ax = {tx : t € R} =Rz, since x € Soc (A4). By [3 Proposition 4],
A is a Frobenius-Weil algebra if and only if A has a unique minimal ideal.

ExampLE 2.2. When A = Dy, Soc(A) is the vector subspace spanned
by eq, |a| = r hence dimg Soc (4) = (p+:_1). Thus Dj, is a Frobenius-Weil
algebra if and only if p+r —1 =1, ie., p=1.

COVARIANT DESCRIPTION OF A WEIL FUNCTOR T4 : Mf — FM: Let
us denote by M f the category of finite dimensional differential manifolds and
mappings of class C°, FM the category of fibered manifolds and fibered
manifolds morphisms and VB C FM the subcategory of vector bundles and
morphisms of vector bundles. Let A = &,/I be a Weil algebra and consider a
manifold M. In the set of smooth maps ¢ € C*°(RP, M) such that ¢(0) = z,
one defines an equivalence relation ~ by: ¢ ~ ¢ if and only if [h]zo[¢]o—[h]z0

[¢lo € I, for all germs [h], € C2°(M,R). The equivalence class of ¢ is denoted
by j4¢ and is called the A—velocity of ¢ at 0; the class j*¢ depends only on
the germ of ¢ at 0. The quotient set is denoted by (TAM), and the disjoint
union of (T4M),, x € M by TAM. The mapping ma s : TAM — M, j4¢
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©(0), defines a bundle structure on T4M and for any differentiable mapping
f: M — N, one can associate a bundle morphism T2 f : TAM — TAN over
f by: TAf (jAgo) = j4(f o ). The correspondence T4 : Mf — FM is a
product-preserving bundle functor ([§]).

EXAMPLE 2.3. When A = J§ (RP,R), then T is equivalent to the functor
Ty of (p,r)-velocities and when A = E1/M?, then T4 = T is the tangent
functor.

Remarks 2.4. (1) Weil functors preserve immersions, embeddings, sub-
mersions, surjective submersions, transversal maps, ...

(2) Let T4, TP : Mf — FM be Weil functors. Hence T4 o TF is
also a Weil functor; its corresponding Weil algebra is canonically isomorphic
to the tensor product B ®gr A of A and B. Moreover there is a bijective
correspondence between the set of natural transformations 74 — T8 and the
set of all algebra homomorphisms A — B.

For a Weil algebra A = R-14 & N, we fix a subset A C {a € NP
1 < |a| < r} such that e, := j*(2%), @ € A constitute a basis N; hence
(€a)actojun is a basis of A = TAR.

LocAL COORDINATE SYSTEM: For a local coordinate system (ui)1<.<
<i<m
on U of a differential manifold M, one can associate an adapted local coordi-

nate system (uz,%) defined on ngM(U) by

u'(jap) = u'(9(0)),

@ (jap) = 2 Dp(u’ 0 ) (0) + Hz LDy (uf 0 9)(0)A2, (2.1)
al<r
ag{0}UA

for1 <i<m, €A, where e, = Z)\geg,forallaeNp\Aandlg la] <.
BEA

THE FLOW OPERATOR OF T“: For a smooth vector field X on a differ-
ential manifold M, let us denote FI¥X : Q — M its maximal flow. One can
define a smooth vector field on TAM by:

d

X(u) = %TA(FQX)(U) =0 -
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This vector field is called the complete lift of X related to T4. One defines
in this way a natural operator (see [§]), F4 : T ~» TF, given for all manifold
M by:

(F4),, : X(M) — X(T*M), X — X°, (2.2)

called the flow operator of TA.

Remark 2.5. X°€ is a projectable vector field since the following diagram

TAM X2 TPANM
ot | |
M ”TM> TM

commutes. In particular, (2.2)) is a Lie algebra homomorphism.

THE CANONICAL FLOW NATURAL EQUIVALENCE f : T4 0T — T o T4 [§]:
Let A = &,/I be a Weil algebra. A natural transformation i : T4oT — ToT4
is called a flow natural transformation if the following diagram

A
TAM X ppApg

7
TAXJ{ % lﬂ-TAM

TATM — TAM

TATNM

commutes for all manifold M and all vector field X on M.

Now, let M be a manifold. For any ¢ = j4¢ € TATM, there is a dif-
ferentiable mapping ® : RPxR — M such that ¢(2) = 4&,(t) |, in a
neighbourhood of 0 € RP (see [§]). By this result, one can define a natural

equivalence

k:TA0T — ToT? (2.3)
as follows:
d
= — t —
#r(€) dt??( ) =0

where n : R — TM, t — j4®?, in a neighbourhood of 0 € R. (2.3) is called
the canonical flow natural equivalence associated to the bundle functor T4.
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NATURAL TRANSFORMATIONS s : T40T* — T*oT4 [2]: Let us consider
a linear map function f : A — R; there is a natural transformation

sp:T40T" — T o T4 (2.4)
defined for all manifold M as follows:

[(s9)ps G0)] (51 (770)) == £ (G (oo m)rna) »
for all j4p € TAT*M, j4n € TATM such that T4}, (4¢) = Tmr (54n)
with (,)pp, : TM & T*M — R the usual pairing.

FROBENIUS-WEIL FUNCTORS: A Frobenius-Weil functor is a Weil func-

tor T4 with A a Frobenius-Weil algebra. Given two Frobenius-Weil functors
T4 and T8, the fiber product T4 & T8 defined by

TA@TB (M) =TAM x5, TPM ,
TAo TP (f) =T f x; TPf,

is Frobenius-Weil functor; the composition 74 o T8 is also a Frobenius-Weil
functor.

THE INTERNALIZATION MAP OF A VECTOR BUNDLE: Let T be a Frobe-
nius-Weil functor with A\g : A — R as the associated linear function.

For a vector bundle (E,M,q), let us consider the vector bundles
(TAE, TAM, TAq) , (TAE*, TAM, TAq*) and the non-degenerate bilinear form
(N : TAE @pap TAE* — R given by ((,)) 5 := Ao T? (,) 5. The induced
vector bundles isomorphism

I . T4E* — (T1E)" (2.5)
over TAM is called the internalization map of (E, M, q) associated to T4.
eWhenTA =T, Iy = Ig :TE* — T*FE is an isomorphism of double vec-
tor bundles over E* and TM from (TE*; E*,TM; M) to (T*E; E*,TM; M)
the horizontal dual of (TE; E,TM;M) (see [13)]).
e When E = T'M is the tangent bundle of M, it is clear that (sx,),, =

(/i]_wl)*oITM, where (ky7)* denotes the transpose over T4M of &X/[l :TTAM —
TATM:; the natural equivalence s o 1s often denoted

e TAT — T 0T (2.6)
and called the Tulczyjew natural isomorphism associated to T4. Moreover,

by [3, Proposition 6], (2.4) is a natural equivalence if and only if A is a
Frobenius-Weil algebra (with the associated linear form f).
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3. PROLONGATION OF SOME TENSOR FIELDS

In all the section, T4 is a Weil functor.

NATURAL TRANSFORMATIONS Yo : T4 — T4: Given a vector bundle
(E, M,q), the fibered multiplication m” : R x E — E is a vector bundle
morphism over the projection R x M — M; the induced map T4 (mE) :
A x TAE — TAE determines for each a in A a natural transformation

Qa) : T4 — T4 (3.1)

by Q(a)g := T*mF(a,").
When e, = j4 (2%), o € NP, the natural transformation Q(e,) is denoted
Xa : T4 — TA. Tt is clear that

(xa)p (i%9) = 7 (=%¢), (3.2)

for all smooth map ¢ : RP — E.

PROLONGATION OF FUNCTIONS: Let us recall these tools of [4].
Let f : M — R be a smooth function. The A-lift of fis f*) := Xo TAf,
for A : A — R a linear map. It is easy to check that (f o h)(’\) = fWN o TAp,

for h : N — M a smooth map and (f; + f2)(/\) = 1()\) + fQ(A), for all smooth
functions f1, fo on M. One denotes

fl) = et oTAf (3.3)
the lift of f € C*° (M, R) associated to the linear form e}, a € {0} U A, with
the convention f(®) = 0, for all a in ZP\{0} UA. f¢:= fO = fopi is
called the complete lift of f. In particular when (ui, %) is the adapted local
coordinate system l} of TAM associated to (u’), we have

ui (0) — UZ,
(ui)(a) =, for ain A.
This implies that functions f(®), o € {0}UA generates the algebra C'> (T AM )
of smooth functions on T4M.
In particular, when f : £ — R is constant or linear on fibres of a vector
bundle q : E — M, the A\-lift of f is also constant or linear on fibres.
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PROLONGATION OF VECTOR FIELDS: For a vector bundle (E, M, q), a
smooth section ¢ € ' (E) and an element a of A, one can define a smooth
section

Q(a) = @(Q)E o TAQ (3.4)

of the vector bundle (TAE, TAM, TAq). In particular, given a smooth vector
field X on M, one can associate a vector field on T4 M,

X@ = krr0Q(a)rar o FX = Q(a)ar o Fur X, (3.5)

where Q(a) : TT4 — TT# is the natural affinor defined by Q(a)ys = Kas o
Q(a)ar oKy -

Let A : A — R a linear map and A\, : A — R the linear map given by
Ao () = X (ax), for a € A. The following equalities hold (see [4]):

x (@ ( fu)) = (X ()P (3.6)

and
(X@,y®] =[x, ], (3.7)

for all smooth function f, vector fields X, Y on M and a,b in A.
Similarly, one denotes

X@ = Q(ea)rr o Fu X (3.8)

the lift of X € X (M) associated to the vector ey, v € NP; its is clear that
X(@ =0, for |a| > r. We have

((XO (1) = [x (NP if pefoyuA,
X@(fO)y =0 if 0£a€N?,
X@O () = [x(NO+ > ol XY

YEA, at+yEA

+ Y XY i aBeA.
YEA, at+yEA

In particular, we have X°(f¢) = (X (f))".
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out’

(2

m .
LOCAL EXPRESSION: Let X € X (M) with X |p= 3. X*-2;: we have
=1

Xe () = (X ()" = X7 opiy.
Xe(m) = ()7 pea,
X@W)y=0 faeN, a#£0,
X@ (@) = Xiopfy+ > & (x)Y
vyEA, at+vyEA
+ Y ML a,BeA;
YEA, at+vygA
hence
X pap=X opﬁﬁui + Z (X*) JuL (3.9)
BEA B
and
a i NG no | 9
X fpap =3 | X opi 43 Gory (XN 430 Ay (X7 | 57
BEA YEA YEA B
a+vEA a+yEA

for « #0 in NP,

One may also deduce that

c (@)
(8) 9 and (8) :i. 1<i:<m and o€ A.

oui) — oul ou’ out,’

PROLONGATIONS OF k-FORMS: Each k-form w on a manifold M may
be viewed as a skew symmetric k-linear function & : @ TM — R. Since
ks TATM — TTAM is an isomorphism of vector bundles over T4 M, one
defines in 4] a k-form w™ on TAM by:

k
w =XoTA (@) o @ Kif s (3.10)

for a linear fonction A : A — R. The following properties are satisfied by wV:
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ProrosiTiON 3.1. ([4]) For all ay,...,ax € A, all Xy,..., X, € X(M)
and all smooth function f on M, we have:
W (XM, X)) = (X, X)) G,
(T45)" (@) = (f0) (3.11)
dwW) = (dw)m.

In particular, if w is closed, then w™ also closed.

Remark 3.2. Since w may also be viewed as a skew symmetric (k — 1)-
linear morphism w” : @kil TM — T*M, w™ is also given by

{w()‘)r = (s3)y, 0 T4 (wb) o @k_l Kifs (3.12)

where sy : TAT* — T*T4 is the natural transformation (2.4). In particular,
when (M, w) is a symplectic manifold, T4 a Frobenius-Weil functor and \g
the associated linear function, hence

[w()‘o)]b = Ef/[ oT4 (wb> o KJT/Il

is a vector bundle isomorphism over idpa ,; , so w*0) is a closed nondegenerate
2-form on TAM, i.e., (TAM , w(’\o)) is a symplectic manifold. w0) is denoted
w® and called the complete lift of w to TAM.

4. SOME LINEAR TENSOR FIELDS ON VECTOR BUNDLES
DOUBLE VECTOR BUNDLE:

DEFINITION 4.1. (See [13] or [6]) A double vector bundle is a system
(D; A, B; M) of four vector bundle structures

qD
D25 B

qgl qu (4.1)

A5 M
where D is a vector bundle on bases A and B, which are themselves vector
bundles on M, such that each of the four structure maps of each vector bun-
dle structure on D (projection, addition, scalar multiplication and the zero
section) is a vector bundle morphism with respect to other structure.
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Remark 4.2. The double tangent vector bundle of a vector bundle (E, M, q)

TE — 2 TMm
FEl lﬂ]u (42)

E 25 M
allows the concept of linear vector fields, i.e., sections of TE — FE that

are morphisms of vector bundles with respect to the vector bundle structure
TE — TM. This may be generalize to an arbitrary double vector bundle.

THE VERTICAL DUAL OF THE TANGENT DOUBLE VECTOR BUNDLE: Given
a vector bundle (E, M, q), the vertical dual

T™*E 2 E*
“%l lq* (4.3)

E 2o M
of the tangent double vector bundle (4.2)) is defined as follows: T*FE — FE
is the dual of the tangent bundle TE — F; if g : Exy F — VE C TE,
(e;€') = L (e+te) ;=0 is the vertical lift ([§]) of E, rg = pa o 7}, where
p2 : ¢ (E*) — E* is the canonical projection. The fiber over 6 € EZ is the

set of all linear functions ® : T,.E — R (e € E;) such that ® o 75 (e, ) = 6.
Moreover given a local coordinate system (l‘i, yj) of E deduced from a fibered

chart,
iy — 0E*
rE (da:) —0‘ ogq, (4.4)
e (dyj) =¢log,

where 0F" : M — E* is the zero section and 7 the local section corresponding
the linear function 3. Finally, the addition and the multiplication of T*E —
E* are defined on fibres by

<q> . @f) (€)= D () + ' (¢,

(S e q’) <STM§> =s®(¢),

where ® € T*E, & € THE, ¢ € ToyuB, & = ¢ + ¢ with £ € T.E
™
and ¢ € T.E.

(4.5)
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LINEAR k-FORMS: Let (E,M,q) be a vector bundle. A smooth
k-form w : F — /\k T*E (k > 1) is said linear if the associated morphism
of vector bundles w” : @kil TE — T*E over E is also a morphism of vector

bundles
d'TE 5 T*E

et T‘Il J{TE
@ trM = E
over a smooth multilinear map w : @k_l TM — E*. Equivalently, if
@ @ TE — R
B TLES (&,....&) — w(e) (.. &)

denotes the corresponding multilinear function, hence w is linear if and only
if @ is a morphism of vector bundles

@'TE —2 R
on| |
@AM —— {pt}

over a constant map (see [I0]). In local coordinate (z*,3’) of E, each linear
k-form (w,w) can be written

1 : : :
dz"™ A - Adx™ 0 A dy?

w ‘q*l(U) = vy Wi
kb — 1) ~4tk-1g
=y T | (4.6)
+ i Wiy iy dx™ A - Nda'
where g(@;%7”‘78xi%) = Qil...ik,ljgj with (Ej) the local frame of E*

associated to linear functions y/ : ¢=1(U) — R.

THE STRUCTURE OF LINEAR k-FORMS [10]: We give there an intrinsic
description of the structure of a linear k-form on E. Let us denote Q" (M; Q)
the module of G-valued h-forms on M, i.e., the module of smooth sections
of the vector bundle A" T*M © G over M. If {g : I (E*) — Cy° (E) is the
canonical isomorphism of modules over C*° (M), we have £,(g) (¢ (7))
U (0) () and there exists a morphism of modules over C* (M),

e —

0" (B;q* (E*) — Q" (E), ¢+—§,
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given by ¢ (X1,..., Xp—1) = ly=(p) (¢ (X1, -, Xg—1))-

Let (w,w) be a linear k-form on E. w : @" ' TM — E* is a E*-valued
(k —1)-form on M, ie., w € Q1 (E;E*); its pull-back by the projection
q: E— Mis q¢* (w) € Q"1 (E;¢* (E*)), hence  := q/*\(_g/) is a (k — 1)-form
on E. If locally w |y= ﬁgil covip_1jdzt Ao Ada1 ®@ €D it s clear by
that @ |;-1()= ﬁ Wi ip 15 © qydz™t A -+ A dz™-1; let us consider
pe= (-5 e QY(E).

PROPOSITION 4.3. We have
w=du+v,

where v € Q¥ (E; T*E) is a linear k-form over the zero map. Moreover, in
the case of closed k-forms, w determines w.

Proof. Indeed v := w — dp is clearly a linear k-form on E and since du =

1 1 o 4
V)= (k!wz’l...z‘m - (k_l)!%wil...iklj) y'dz™ A Adatt
is a linear k-form on E' |y over the zero multilinear map by (4.4]). Moreover,
dw =0 iff dv =0, i.e., v = 0, hence w = du is entirely determined by w. |}
Remark 4.4. For each morphism of vector bundles p : £ — T*M, the
pull-back othhe Liouville 1-form Ay, € Q! (T*M) by p is equal to p*, i.e.,
p* ()\M) = p* Indeed if AM |7TX4_1(U): pZdeZ and p* (az) :Qijsj, we have

p* (Aar) lg=1(y= pi © pd (' 0 p) = p; o pda’; but
piop(e) = p(e) (B)ye) = (€) 2 (1) (@)y(0))
=y (e)wy, (a(e)) da* ((90)y0)) = (wij 0 ay) (o),

hence p* (Aar) |g-1(0)= wi; © gy da’.

SYMPLECTIC FORMS: Now, let (w,w) be a linear 2-form on F; hence w is
a morphism of double vector bundles over F and w; let us denote p : E — T*M
its core morphism. Since the transpose w* of w is a morphism of double vector
bundles over E and p with w* as core morphism ([13, Proposition 9.2.1]), the
equality w* = —w implies p* = —w. The following result follows:
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PROPOSITION 4.5. ([6]) w is closed if and only if w is the pull-back of the
canonical symplectic form wy; on T*M by p, i.e., p*wy = w.

Proof. w is closed if and only if w = d (—w) by Proposition moreover
p" = —w hence w =d (") = d (p” () = p" (dAng) = 9" (wrr). 1

EULER VECTOR FIELD OF A VECTOR BUNDLE: Let (E, M, q) be a vector
bundle.
The group of homotheties induces a 1-parameter group

h:RxE—E, (t,u)r— e - u;

the associated vector field £ € X(FE) is given by:

{e (u) = aet U Ji=0 -

Moreover &g is a linear vertical vector field since

E -2, TE

TR

OTM
M — TM

is a morphism of vector bundles. If (xi,yj ) is local coordinate system of F
deduced from a fibered chart (¢~' (U),¢) and &g |,-1(v)= fj%, we have

d

¢l (u) = ¥ otp (u) = £Z/j (€' u) [i=0= %etyj () li=o =y’ (u),

for all u € ¢~1 (U), hence
-0
el =¥ 5,5

&g is called the Euler-Liouville vector field associated to E ([3]). &g is
clearly complete and for all vector bundle morphism f : E — F, {g and &
are f-related.

Remarks 4.6. (1) Let us denote ¢*C>* (M) = {hoq : h€ C*° (M)} the
module of smooth functions £ — R constant on fibres and Cy° (E) that of
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functions linear on fibres. Since each linear vector field is determined by its
values on ¢*C*> (M) and C}° (E) (see [13]), it is also clear that g is the only
linear vertical vector field on E such that

Leof =6 (f) =1, (4.7)

for all f € CP°(E).
(2) More generally, let ¥ : E — /\k T*FE be a linear k-form, i.e., a k-form
k

such that ¥ : @TFE — R is a linear function when TE is endowed with its
vector bundle structure on T'M. Hence

££E¢:¢-

Indeed for all u in F,

_ d *__
EﬁEw(U) = dt (Fle) P(u) i=0
d k

= %@etu od |:6t TM idTE] |t:0
d ,_ L
= 2¢ Pu lt=0  (since ¥ is linear)

5. MAIN RESULTS

In this section, T is a Frobenius-Weil functor with Ay as the associated
linear form

PROLONGATIONS OF EULER VECTOR FIELDS: Let E be a vector bundle.
According to (3.8)), one can define some lifts

&) == Q(ea)r o Frtr, (5.1)

of the Euler-Liouville vector field £ of F, associated to en, o € NP,

PROPOSITION 5.1. §g]) = (¢g)° is the Euler-Liouville vector field &pap of
the vector bundle (TAE, TAM, TAq).
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Proof. In a fibered chart (¢~1(U), 2%, y?) of E, Eelg1 ) = yjaiyj then in
the local coordinate (2%, 7, yj,yé) of TAE, we have
0

; 0
c _ A —
(gE) ’TAqfl(U)_ yj °PE ayj + E y]ﬂ 8@]6 )

BeEA
according to (3.9). N

COROLLARY 5.2. (i) &pap is the only linear vertical vector field on T4E
such that &pap(f(@) = (@) for all f in C° (F) and a € NP.
(ii) Moreover for any linear k-form on E, we have:

Le , 7Y =2 ae{0}nA.

Proof. (i) By Remark[4.6(1), &rap is the only linear vertical vector field
on TAE such that érap(f) = f, for all f in C§° (TAE) and since this module
is generated by lifts f(*), a € NP of f in C{° (E), {pag is the only linear
vertical vector field on TAE such that &pap(f(®)) = (@), for all f in C°(E)
and a € NP,

(ii) By Remark (2) since B(®) is a linear k-form.

PROPOSITION 5.3. For any vector bundle morphism f : E — F, Euler
vector fields &pag and Epap are TA f-related.

Proof. Indeed
TTAfobpag =TT forpo T (¢p)
= kpoTATf o T (£5) (since k is a natural transformation)
=kpoTH(Tfotp)
=fkpoT? (Epof) (since &p are f-related)
=&pap o TS,
hence TTAf o &pap = EpapoTAf. 11

PROLONGATIONS OF LINEAR k-FORMS: For a linear k-form (w,w) on E,
let us consider its complete lift w® on TAF given in Remark by:

k—1
W) = e o T o @ Ky
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THEOREM 5.4. Hence (w® w®) is a linear k-form with w® = Ig oT4w o
@k_l m;}. In particular, if (w,w) is a linear symplectic form, (w® w€) is also
a linear symplectic form with the core morphism p° := 5‘]?4 o T4p.

Proof. w€is a k-form on TAE by Remark and since rpag = 1 éoTAr EO
(5‘]_%)71 :T*TAE — (TAE)*, the second part of the proof is clear. |

Let (w,w) be a linear 2-form on F and p : E — T*M a morphism of vector
bundles over M.

COROLLARY 5.5. Hence w® is closed if and only if (p)* w§; = w®, where
w§, denotes the complete lift of the canonical symplectic form wys on T*TAM.

PROLONGATIONS OF SYMPLECTIC VECTOR BUNDLES: Let (E, M, q) be
a vector bundle of rank 2n.

A symplectic form on (E,M,q) is a fibrewise smooth bilinear function
w: FE®FE — R endowed with a symplectic structure on each fiber. A
pair (F,w) is called a symplectic vector bundle if w is a symplectic form on
(E, M, q). Given two symplectic vector bundles (F,w) and (E’,«'), a vector
bundle isomorphism f : E — E’ is called a symplectomorphism if f* (') = w,
ie., fx (w}(x)) = wy, for all z in M. It is clear that each symplectic manifold

(M, w) induces a symplectic vector bundle (TM,w).

Let w” : E — E* be the vector bundle isomorphism associated to a sym-
plectic form w on (E, M, q); there is a well-defined symplectic form w? on the
vector bundle (TAE,TAM , TAq) induced by the vector bundle isomorphism
I o TAW’ : TAE — (TAE)". We have

wh =X oTAw : TAE® T E — R. (5.2)
PROPOSITION 5.6. Hence (TAE,wA) is a symplectic vector bundle.
DEFINITION 5.7. w? is called the complete lift of w to TAE — TAM.
The symplectic vector bundle (T AE,wA) is called the complete lift of (E,w)
to TAE — TAM.
PROPOSITION 5.8. Let (E,w), (F, 1) be two symplectic vector bundles and

f : E — F a symplectomorphism. Then TAf : TAE — TAF is also a
symplectic isomorphism.
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Proof. Indeed
(TAF) = ()t =t

So TAf is a symplectomorphism. 1l

PROLONGATIONS OF SYMPLECTIC CONNECTIONS: Let (E,w) be a sym-
plectic vector bundle. A linear connection on (E, M, q) given by its covariant
derivative V : (X,0) — Vxo is said symplectic if its covariant derivative
V xw along each smooth vector field X on M vanishes, i.e.,

wa (01,02) =X '(.U(O'l,O'Q) —w(VXUl,UQ) —w(Ul,VX(TQ) =0.

In [I7] the author defined the complete lift 74T of an arbitrary connec-
tion on a fibered manifold. In the particular case of linear connections on a
vector bundle (E,M,q), the following results are generalizations of some
results of [I]:

PROPOSITION 5.9. ([15]) Let I' be a linear connection on (E, M, q), V its
covariant derivative, TAT the complete lift of ' to (TAE, TaoM,Ty7) and V4
the covariant derivative associated to TAT. Then TAT is the unique linear
connection on (TAE, Ty M, Tym) such that

VAo = (Vxo)etd e NP, (5.3)

for all smooth sections o : M — E and X € X(M).

COROLLARY 5.10. ([15]) Let T' be a linear connection on M, V its co-
variant derivative, I'¢ the image of TAT by the vector bundles isomorphism
ky 2 TATM — TTAM. Then I'° is the unique linear connection on TaM
such that

Vi@ Y? = (VxY)etd o e N, (5.4)
for all vector fields X, Y € X(M).

Now, let T" be a linear connection on (E, M, q).

THEOREM 5.11. If T' is a symplectic connection on (E,w) then TAT is
also a symplectic connection on (TAE,wA). In particular, the complete lift
I'¢ of a symplectic connection I' on TM is a symplectic connection on TTAM.



ON LIFT OF SYMPLECTIC VECTOR BUNDLES 115

Proof. Indeed, for all smooth sections o1, 09 : M — E and X € X(M),
v?{(a)wfl (U§B)’U§7)) — x(@) . A (Ugﬁ)’ Uév)) _WA (vg‘((a>a§5’,a§”)
WA <U§5)7 V‘;‘((a)ay))
_ X (4 (07, 09)) (Pesir) _ ((VXal)(a+ﬁ)70'gY)>

A (0§5)7 (VXaQ)(a—W))

— [X -w (o1, 09)] (ORI I w (Vxor1, )] (CON.
— [w (o1, Vx02)] <()\0)ea+ﬁ+v>
=[X w(o1,02) ~w(Vxoi,02) —w (01,VXU2)]<()\O)60‘+’3+7)

— [VXW (0'1’ 0-2)] ((Ao)eoﬂ—ﬁ%—w) ,

by the definitions, 1) 1D and 1) Since the set of all sections (),

o : M — FE smooth section of E and o € NP, spans the module of smooth
sections of the vector bundle (T4 E, Ty M, Ts7), the result follows. I

Remark 5.12. Replacing (E,w) with a semi-Riemannian vector bundle
(E,g), a linear connexion V on (E,M,q) is called a metric connection if
the covariant derivative Vxg of g along each smooth vector field X on M
vanishes. The tangent bundle M of a semi-Riemaniann manifold (M, g) is a
semi-Riemannian vector bundle (T'M, g).

Now, let I" be a linear connection on (E, M, q).

COROLLARY 5.13. If T’ is a semi-Riemaniann connection on (E,g) then
TAT is also a semi-Riemaniann connection on (TAE,gA). In particular,
the complete lift I'“ of a semi-Riemaniann connection I' on T M is a semi-
Riemaniann connection on TTAM.

APPLICATIONS IN HAMILTONIAN MECHANICS: Let (E,w) a linear sym-
plectic manifold and w” : TE — T*E its associated morphism of double
vector bundles. The Poisson morphism of the induced linear Poisson mani-
fold (E, ) is nf = (w*)~! : T*E — TE. Hence, {G, H} = w (Xg, Xy), where
Xg = m(dG), Xy := 7*(dH) are the Hamiltonian vector fields associated
to functions G, H € C* (F). In particular if H € C° (E) is linear on fibers,
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then Xy is a linear vector field. H is called a Hamiltonian function and Xy
the Hamiltonian vector field associated to H.
Let HA=H® =g opé, the complete lift of H to TAE; it is clear that:

1. (H o h)¢ = H¢oT"h, for any morphism of vector bundles h : F' — E.
2. (Hi+ Hy)¢ = H{ + H§ and dH® = (dH)¢, for all Hy, Hy, H € C}° (E).

Remark 5.14. Let (TAE,’]TC) be the Poisson manifold associated to the
linear symplectic manifold (TAE,wC); we have

(5.5)

7V = kpoTArt o (e2)~1 . T*TAE — TTAE,
( o
XHc = (XH)C,

-1

for all H € C° (B). Indeed (7°)¢ = [(w®)’] = kpoTAn% o (e4)! and

Xpge = (7 (dH®) = kg o TA7% o ()71 (dH)®)
= ko Tt o ()™ [ o T4 (dH)]
=kpo T Xy = (Xg)°,
hence Xy is the complete lift of Xy to T’ AE.
PROPOSITION 5.15. {G°, H°} = {G,H}", for all G, H € C° (E).
Proof. Indeed

{G° H} = Xge(H) = (Xa) (H)
= (Xa (H))*={G, H}*,

hence {G°, H°} = {G, H}", for all G,H € C}° (E). 1

DEFINITION 5.16. Let (F,w) alinear symplectic manifold and H e C° (E)
a Hamiltonian function.

(1) The triple (E,w, H) is called a Hamiltonian mechanical system.

(2) An integral of motion for (E,w,H) is a function f with {H, f} =
Xg(f) = 0, i.e., f is constant on any trajectory generated by Xp.
Note that H itself is an integral of motion for (E,w, H) ( conservation
of energy). The integrals of motion for (E,w, H) form a sub-Poisson
algebra of C*°(E).
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Remarks 5.17. (a) Let ¢; be the flow of X. Then ¢jw = w for all t € R,
i.e., ¢ is symplectic. Hence ¢f is symplectic.

(b) Let (E,w, H) be a Hamiltonian mechanical system and (T4E,w®, H°)
its complete lift. Hence, if f is an integral of motion for (E,w, H) then f€ is
also an integral of motion for (TAE,w®, H°).
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